Linux驱动的软件架构(三):主机驱动与外设驱动分离的设计思想

简介: Linux驱动的软件架构(三):主机驱动与外设驱动分离的设计思想

《Linux设备驱动开发详解》的学习笔记

1、主机驱动与外设驱动分离

Linux中的SPI、I2C、USB等子系统都利用了典型的把主机驱动和外设驱动分离的想法,让主机端只负责产生总线上的传输波形,而外设端只是通过标准的API来让主机端以适当的波形访问自身。因此这里面就涉及了4个软件模块:

1)主机端的驱动。

根据具体的I2C、SPI、USB等控制器的硬件手册,操作具体的I2C、SPI、USB等控制器,产生总线的各种波形。

2)连接主机和外设的纽带。

外设不直接调用主机端的驱动来产生波形,而是调一个标准的API。由这个标准的API把这个波形的传输请求间接“转发”给了具体的主机端驱动。当然,在这里,最好把关于波形的描述也以某种数据结构标准化。

3)外设端的驱动。

**外设接在I2C、SPI、USB这样的总线上,但是它们本身可以是触摸屏、网卡、声卡或者任意一种类型的设备。**我们在相关的i2c_driver、spi_driver、usb_driver这种xxx_driver的probe()函数中去注册它具体的类型。当这些外设要求I2C、SPI、USB等去访问它的时候,它调用“连接主机和外设的纽带”模块的标准API。

4)板级逻辑。

板级逻辑用来描述主机和外设是如何互联的,它相当于一个“路由表”。假设板子上有多个SPI控制器和多个SPI外设,那究竟谁接在谁上面管理互联关系,既不是主机端的责任,也不是外设端的责任,这属于板级逻辑的责任。这部分通常出现在arch/arm/mach-xxx下面或者arch/arm/boot/dts下面。(设备树看一下—在技能知识专栏里)

什么叫良好的软件设计一言以蔽之,让正确的代码出现在正确的位置。不要在错误的时间、错误的地点,编写一段错误的代码。在LKML中,关于代码出现在错误的位置,常见的台词是代码“out of place”。

Linux通过上述的设计方法,把一堆杂乱不友好的代码变成了4个轻量级的小模块,每个模块都各得其所。每个模块都觉得很“爽”,站在主机端想一想,它其实也是很“爽”的,因为它的职责本来就是产生波形,而现在我们就让它只产生波形不干别的;站在外设端想一想,它也变得一身轻松,因为它根本就不需要知道自己接在主机的哪个控制器上,根本不关心对方是张三、李四、王五还是六麻子;站在板级逻辑的角度上,你做了一个板子,自己自然要知道谁接在谁上面了。

小结

真实生活中的驱动并不像第6~11章里那样的驱动,它往往包含了platform、分层、分离等诸多概念,Linux内核目前有百多个驱动子系统,一个个去学肯定是不现实的,在方法上也是错误的。我们要掌握其规律,以不变应万变,以无招胜有招。

关于具体的驱动类型的编写,详细的内容可以留言我们一起学,也可以去书里面找找。

目录
相关文章
|
10天前
|
存储 边缘计算 Cloud Native
“论模型驱动架构设计方法及其应用”写作框架,软考高级,系统架构设计师
模型驱动架构设计是一种用于应用系统开发的软件设计方法,以模型构造、模型转换和精化为核心,提供了一套软件设计的指导规范。在模型驱动架构环境下,通过创建出机器可读和高度抽象的模型实现对不同问题域的描述,这些模型独立于实现技术,以标准化的方式储存,利用模型转换策略来驱动包括分析、设计和实现等在内的整个软件开发过程。
|
2天前
|
缓存 网络协议 算法
【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)
在Linux环境下,主要存在四种IO模型,它们分别是阻塞IO(Blocking IO)、非阻塞IO(Non-blocking IO)、IO多路复用(I/O Multiplexing)和异步IO(Asynchronous IO)。下面我将逐一介绍这些模型的定义:
|
4天前
|
存储 关系型数据库 分布式数据库
PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题
【7月更文挑战第3天】PolarDB,阿里云的云原生分布式数据库,以其存储计算分离架构为核心,解决传统数据库的扩展性问题。此架构让存储层专注数据可靠性,计算层专注处理SQL,提升性能并降低运维复杂度。通过RDMA加速通信,多副本确保高可用性。资源可独立扩展,便于成本控制。动态添加计算节点以应对流量高峰,展示了其灵活性。PolarDB的开源促进了数据库技术的持续创新和发展。
20 2
|
20天前
|
Linux 程序员 芯片
【Linux驱动】普通字符设备驱动程序框架
【Linux驱动】普通字符设备驱动程序框架
|
2天前
|
Linux 开发者
Linux底层驱动社区饮水机系统详解
在Linux驱动开发中,入门时通常会关注驱动程序的三大核心步骤:入口函数、出口函数和声明许可证。这些步骤构成了驱动程序的基本结构,是驱动与内核交互的基础。下面是对这三个步骤的简要说明:
|
3天前
|
中间件 BI 测试技术
【实践篇】领域驱动设计:DDD工程参考架构
领域驱动设计(DDD)参考架构旨在为团队提供DDD实践的起点,强调业务与技术的分离,考虑多种架构风格如分层、六边形等。它包括多限界上下文结构,每个上下文内有应用层(不含领域逻辑)、领域层(含领域模型和事件)和网关层。接入层负责外部请求的处理,业务层协调不同上下文。组件包括Start(启动)、Common(通用)、API、Facade、Application Service、External API、Query、Domain和Gateway,各组件有明确的职责和依赖关系,如Gateway处理技术细节并作为系统与外部的接口。架构设计是多因素权衡,适应实际工程需求。
|
20天前
|
Linux
【Linux驱动学习(1)】USB与input子系统,linux统一设备模型,枚举,USB描述符深入剖析
【Linux驱动学习(1)】USB与input子系统,linux统一设备模型,枚举,USB描述符深入剖析
|
20天前
|
存储 传感器 编解码
【Camera基础(二)】摄像头驱动原理和开发&&V4L2子系统驱动架构
【Camera基础(二)】摄像头驱动原理和开发&&V4L2子系统驱动架构
|
3天前
|
监控 Java 持续交付
使用Java构建企业级微服务架构的策略与挑战
使用Java构建企业级微服务架构的策略与挑战
|
2天前
|
Kubernetes 持续交付 Docker
现代后端开发中的微服务架构与容器化技术
本文探讨了现代后端开发中微服务架构与容器化技术的重要性和应用。微服务架构通过服务的拆分和独立部署提升了系统的灵活性和可维护性,而容器化技术则为微服务的快速部署和管理提供了解决方案。文章深入分析了微服务架构的优势、挑战以及如何利用容器化技术来支持微服务架构的实现。最后,通过实际案例展示了微服务与容器化技术在提升应用开发效率和系统稳定性方面的应用实践。【7月更文挑战第5天】