【论文速递】CVPR2020 - CRNet:用于小样本分割的交叉参考网络

简介: 【论文速递】CVPR2020 - CRNet:用于小样本分割的交叉参考网络

【论文原文】:CRNet: Cross-Reference Networks for Few-Shot Segmentation

获取地址:https://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_CRNet_Cross-Reference_Networks_for_Few-Shot_Segmentation_CVPR_2020_paper.pdf

博主关键词: 小样本学习,语义分割,孪生网络

推荐相关论文:

【论文速递】IJCV2022 - CRCNet:基于交叉参考和区域-全局条件网络的小样本分割


摘要:


在过去的几年里,最先进的图像分割算法是基于深度卷积神经网络的。为了渲染一个具有理解概念能力的深度网络,人类需要收集大量像素级注释数据来训练模型,这是耗时且繁琐的。为了解决这一问题,最近提出了小样本分割。小样本分割的目的是学习一种只需要少量训练图像就可以推广到新类的分割模型。本文提出了一种用于小样本分割的交叉参考网络(CRNet)。与以往只预测查询图像中的掩码不同,本文提出的模型同时对支持图像和查询图像进行预测。通过交叉引用机制,我们的网络可以更好地找到两幅图像中同时出现的物体,从而帮助完成小样本分割任务。 此外,我们还开发了一个掩码优化模块,用于对前景区域的预测进行循环优化。对于k-shot学习,我们建议对部分网络进行微调,以利用多个标记的支持图像。在PASCAL VOC 2012数据集上的实验表明,我们的网络达到了最先进的性能。


简介:


自ImageNet分类挑战[4]取得巨大成功以来,深度神经网络已广泛应用于视觉理解任务,如目标检测、语义分割和图像字幕。由于其数据驱动特性,通常需要大规模标记数据集来实现深度模型的训练。然而,在语义分割、实例分割和视频分割等任务中,收集标记数据可能是非常昂贵的。此外,数据收集通常是针对一组特定的类别。以前课上学到的知识很难直接转移到看不见的课上。直接微调训练模型仍然需要大量新的标记数据。另一方面,为了解决这一问题,提出了小样本学习。在小样本学习任务中,在先前任务上训练的模型被期望只使用少量标记的训练图像就可以泛化到未见过的任务。

640.png

Fig. 1. 我们提出的CRNet与以前工作的比较。之前的工作(上半部分)是单方面用支持图像来指导查询图像的分割,而在我们的CRNet中(下半部分)支持图像和查询图像可以相互指导分割。

本文的目标是小样本图像分割。对于一个新的物体类别,小样本分割的目的是在只看到少数标记样本的情况下找到该类别的前景区域。以前的许多工作将小样本分割任务制定为引导分割任务。引导信息从查询图像中用于前景预测的标记支持集中提取,通常采用不对称的双分支网络结构实现。 以地面真相查询掩码为监督,对模型进行优化。

在我们的工作中,我们认为查询集和支持集的角色可以在小样本分割模型中切换。具体来说,支持图像可以指导查询集的预测,相反,查询图像也可以帮助对支持集进行预测。 受图像共分割文献[7,12,1]的启发,我们提出了一个对称的交叉参考网络,两个头部同时对查询图像和支持图像进行预测。网络设计与以往作品的差异如图1所示。网络设计中的关键组件是交叉引用模块,该模块通过比较两幅图像中的协同流特征来生成增强的特征表示。在两幅图像中,对下游前景进行了增强表示。同时,交叉引用模块还对两幅图像中同时出现的物体进行预测。该子任务在训练阶段提供了一个辅助损耗,以方便交叉引用模块的训练。

由于物体外观存在巨大的差异,图像前景区域的挖掘是一个多步骤的过程。我们开发了一个有效的掩码优化模块来迭代优化我们的预测。在最初的预测中,期望网络定位高置信度的种子区域。然后,以概率图的形式将置信度图作为缓存保存在模块中,用于以后的预测。 每次做出新的预测时,我们都会更新缓存。在运行掩模细化模块后,我们的模型可以更好地预测前景区域。我们通过实验证明,这种轻量级模块可以显著提高性能。

在提供多张支持图像的k-shot图像分割中,以往的方法通常采用1-shot模型对每一张支持图像单独进行预测,并融合其特征或预测掩码。在我们的论文中,我们建议使用标记的支持示例对我们的网络的部分进行微调。 由于我们的网络可以同时对两个图像输入进行预测,我们最多可以使用k^2个图像对来微调我们的网络。我们基于微调的方法的一个优点是,它可以受益于支持图像数量的增加,从而不断提高精度。相比之下,当提供更多的支持图像时,基于融合的方法很容易饱和。在我们的实验中,我们在1shot、5shot和10shot的设置中验证了我们的模型。

本文的主要贡献如下:

  • 我们提出了一种新的交叉参考网络,它可以同时对小样本图像分割任务中的查询集和支持集进行预测。通过挖掘两幅图像的共现特征,我们提出的网络可以有效地改善结果。
  • 我们开发了一个带有置信度缓存的掩码优化模块,能够循环优化预测结果。
  • 我们提出了一种kshot学习的优化方案,该方案是处理多幅支持图像的有效解决方案。
  • 在PASCAL VOC 2012上的实验表明,我们的方法显著优于基线结果,并在5shot分割任务上实现了最新的性能。

640.png

Fig. 2. 我们网络架构的pipeline。我们的网络主要由一个孪生编码器、一个交叉引用模块、一个条件模块和一个掩码细化模块组成。我们的网络采用对称设计。孪生编码器将查询和支持图像映射为特征表示。交叉引用模块挖掘两个图像中的共现特征以生成增强表示。条件模块将类别相关的特征向量融合到特征映射中,以强调目标类别。掩码优化模块将最后一次预测的置信度映射保存到缓存中,并循环优化预测的掩码。

相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
69 3
|
1月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
106 1
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
75 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
54 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
4天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
41 17
|
14天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
15天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
39 10
|
17天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
44 10
|
17天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
18天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
下一篇
DataWorks