【论文速递】ICLR2018 - 用于小样本语义分割的条件网络

简介: 【论文速递】ICLR2018 - 用于小样本语义分割的条件网络

【论文速递】ICLR2018 - 用于小样本语义分割的条件网络

【论文原文】:CONDITIONAL NETWORKS FOR FEW-SHOT SEMANTIC SEGMENTATION(Workshop track - ICLR 2018)

作者信息】:Kate Rakelly Evan Shelhamer Trevor Darrell Alexei Efros Sergey Levine

获取地址:https://openreview.net/pdf?id=SkMjFKJwG

博主关键词: 小样本学习,语义分割,条件网络

推荐相关论文:

- 无

摘要:

few-shot学习方法的目标是在低数据状态下获得良好的性能。结构化输出任务,如分割,由于其高维和输出之间的统计依赖性,对小样本学习提出了困难。为了解决这个问题,我们提出了co-FCN,这是一个通过端到端优化学习的条件网络,可以执行快速、准确的小样本分割。网络条件建立在一个带标注的支持图像集上,通过特征融合对一个未标注的查询图像进行推理。一旦学会,我们的条件反射方法就不需要对新数据进行进一步优化。注释被限制在一个单独的向前传递中,这使得我们的方法适合交互使用。我们用密集和稀疏注释来评估我们的co-FCN,即使只给出一个正像素和一个负像素,它也能达到具有竞争力的准确性,减少了分割新概念的注释负担。

简介:

卷积网络正在推动对事物和地点的视觉识别方面的进展,这在一定程度上是由收集昂贵且耗时的大型标记数据集实现的。few-shot学习有望提高数据效率;在极端情况下,一次性学习只需要一个新概念的单个注释。为了快速适应新的领域或任务,目前的一些方法依赖于元学习或学会学习。虽然这些方法很有前途,但重点是分类,而对结构化输出任务的研究很少。由于输出空间的高维,以及输入中像素的空间相关性导致的输出之间的统计依赖关系,目前的方法在很大程度上不能即开即用地应用于结构化输出设置。

语义分割是视觉识别中具有挑战性的核心任务。端到端优化的网络已经实现了最先进的性能,但依赖于大量的像素级标记数据集,这些数据集的收集特别繁重,使得注释负担的减轻实际上非常重要。因此,我们解决了由Shaban等人(2017)首次提出的小样本语义分割问题。在我们的co-FCN网络中,我们增加了FCN (Shelhamer et al., 2016)架构,并加入了一个条件分支,以合并few-shot标注。测试时无梯度流动;给定一个新的few-shot任务,求解它是网络中的一次向前传递。在训练过程中,我们通过从密集标记的语义分割数据集中采样来模拟few-shot任务。

Fig. 1. co-FCN在网络的单次向前传递中进行小样本分割。调节分支(顶部)将支持图像和(密集或稀疏)标注按通道连接起来,并将它们编码为特征(如图所示)或参数。分段分支(底部)在这个编码条件上密集分段查询。对于训练(未显示),从密集标记的数据集合成few-shot任务。该损失将查询图像的预测分割与目标进行比较,目标是由查询的支持和真实语义分割共同定义的。这两个分支是端到端联合学习的。

我们的工作与一次性和交互式的细分方法有关。Shaban等人(2017)是第一个解决小样本语义分割的人。它们假设密集的像素级小样本注释。我们的方法在只有一个正像素和一个负像素的情况下达到了几乎相同的精度。Caelles等人(2017)展示了微调对视频对象分割的有效性,但要求在测试时对每个输入进行优化,在计算和注释方面成本太高。Xu等人(2016)学习了最先进的交互式对象分割,但仅限于在单个图像中传播注释,并且不能跨图像传播。我们的贡献包括处理稀疏的像素级注释,调节特征与参数,以及评估更强的分割和元学习基线。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
69 3
|
2月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
43 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
75 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
54 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
2月前
|
运维 安全 网络安全
|
4月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
55 1
|
4月前
|
人工智能 算法 安全
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码
本文总结了2023年第十三届MathorCup高校数学建模挑战赛C题的解题过程,详细阐述了电商物流网络在面临突发事件时的包裹应急调运与结构优化问题,提出了基于时间序列预测、多目标优化、遗传算法和重要性评价模型的综合解决方案,并提供了相应的31页论文和代码实现。
85 0
|
4天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
41 17
|
14天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
15天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
39 10