【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

简介: 【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

【论文原文】:Few-Shot Segmentation Propagation with Guided Networks

作者信息】:Kate Rakelly∗ Evan Shelhamer∗ Trevor Darrell Alexei Efros Sergey Levine

获取地址:https://arxiv.org/pdf/1806.07373

博主关键词: 小样本学习,语义分割,引导网络

推荐相关论文:

【论文精选】TPAMI2020 - PFENet_先验引导的特征富集网络_小样本语义分割
- https://phoenixash.blog.csdn.net/article/details/128720119

摘要:

基于学习的视觉分割方法已经在特定类型的分割任务上取得了进展,但受到必要的监督、固定任务的狭隘定义以及在纠正错误的推理过程中缺乏控制的限制。为了弥补标准方法的刚性和注释负担,我们解决了小样本分割的问题:给定少量图像和少量像素监督,相应地分割任何图像。我们提出了引导网络,它从任意数量的监督中提取潜在的任务表示,并优化我们的端到端架构,以实现快速、准确的小样本分割。 我们的方法可以在没有进一步优化的情况下切换任务,并在得到更多指导时快速更新。我们报告了从每个概念一个像素分割的第一个结果,并展示了实时交互式视频分割。我们的统一方法跨空间传播像素注释以进行交互式分割,跨时间传播像素注释以进行视频分割,跨场景传播像素注释以进行语义分割。我们的引导分割器在注释量和时间的准确性方面是最先进的。有关代码、模型和更多细节,请参阅http://github.com/shelhamer/revolver。

简介:

学习特定类型的分割,甚至将现有模型扩展到新任务(如新的语义类),通常需要收集和注释大量数据,并(重新)训练模型进行多次迭代。目前的方法是由数千或数万个完全注释的图像来监督的,这样即使是一个“小”数据集也包含数十亿个像素级注释。收集这些密集的注释非常耗时、乏味且容易出错。有许多具有实际和科学意义的任务,在这种规模上的注释是不切实际的,甚至是不可行的,例如平面设计、医学成像等等。

半监督和弱监督分割方法可以跨任务中的输入传播注释(整个视频中的实例分割)或跨不同类型的注释(标签、框和掩码),但目前的方法是特定于任务或监督形式的,并且通常在计算或数据方面效率低下。一旦学会,这些方法很难指导或纠正,并且对少量的进一步注释不敏感。另一方面,交互式分割方法调整到给定的任务很少注释,并可以校正。然而,注释只控制对同一图像的推断,不能通知分割新的输入。

相反,我们解决了小样本分割的问题:只给出一些带有稀疏像素级注释的图像来指示任务,相应地分割没有注释的图像。我们统一的框架是“像素输入,像素输出”,用于从图像内部和跨图像传播任何像素注释集合到未注释的像素进行推断。我们直接优化引导网络来推断由稀疏注释定义的潜在任务,并分割以该任务为条件的新输入。 我们的小样本分段器从每个概念的一个像素中分割出新的概念,并在几乎瞬间结合进一步的注释来更新和改进推理。现有的方法是为特定的分割任务而设计的,在极其稀疏的区域失败,而我们的方法可以在光谱上从一个注释的像素传播到完整、密集的掩模。我们的小样本分割器在根据注释进行切换时是任务不可知的,在从少数像素级注释中学习数据时是高效的,并且在逐步纳入更多监督时是可纠正的。

小样本设置将输入分为一个带注释的支持(监督要完成的任务)和一个应相应地进行分段的无注释查询。在这项工作中,我们解决了小样本分割问题的这些关键部分:(1)如何将稀疏的、结构化的支持总结为任务表示,(2)如何在给定的任务表示上调整像素推理,以及(3)如何综合分割任务的准确性和一般性。结构化输出由于其高维、统计依赖和倾斜的输入和输出分布,对这些方面都提出了挑战。 我们在图像分类设置中连接小样本方法,因为我们使它们适应于分割,以便与我们的方法进行比较。

我们提出了一类新的引导网络,它扩展了小样本和全卷积架构;参见图1。给定一个标注的支持集和查询图像,引导g提取任务的潜在表示z,它通过fθ指导查询的分割。 我们对如何编码支持进行了全面的比较(第4.1节),并引入了一种用于融合图像和注释的新机制,该机制提高了学习时间和推理精度。我们研究了不同的引导推理选择(第4.2节),以确定哪个最适合结构化输出。一旦经过训练,我们的模型就不需要进一步的优化来处理新的少量任务,并且可以快速增量地合并额外的注释来改变任务或纠正错误。

我们在各种具有挑战性的分割问题上评估了我们的方法:5.1中的交互式图像分割,5.2中的语义分割,5.3中的视频对象分割和5.4中的实时交互式视频分割。图2说明了我们所考虑的问题。我们的结果的重点是在稀疏区域,对于这种情况,收集注释是实用的。在所有情况下,我们的准确性都是最先进的注释量和所需的时间。我们的方法合并新注释的速度使它适合实时交互使用。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
69 3
|
2月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
43 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
2月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
75 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
2月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
54 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
4天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
41 17
|
14天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
15天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
39 10
|
17天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
44 10
|
17天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
18天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。