【Python Numpy教程】切片和索引

简介: 【Python Numpy教程】切片和索引

前言


NumPy是Python中用于科学计算的重要库之一,它提供了多维数组对象和许多用于操作这些数组的函数。在本教程中,我们将探讨NumPy中的数组切片和索引,这是使用NumPy进行数据处理和分析时的关键概念。数组切片和索引使您能够访问、操作和修改NumPy数组的元素,对于数据处理和提取特定数据非常有用。


一、切片和索引是什么?


当使用NumPy进行数据处理时,切片和索引是两个关键概念。

索引 就像是查找数组中的元素的地址。就像您查找书中的特定页数一样,索引帮助您找到数组中特定位置的值。索引从0开始,所以第一个元素的索引是0,第二个是1,以此类推。

切片 就像是从数组中切出一部分。可以想象成切面包,您可以选择切出的部分的起始和结束位置。这允许您提取数组中的一段数据,而不是整个数组。

索引帮助您找到一个具体的元素,而切片则让您可以选择一个范围,取出一组元素,或者按照一定规则筛选出数组中的数据。这两个工具对于从大型数据集中获取所需信息非常有用,让数据处理更加高效。


二、数组索引


操作

在NumPy中,您可以使用索引来访问数组中的元素。索引从0开始,使用[]进行索引操作,因此第一个元素的索引是0,第二个元素的索引是1,依此类推,如果学过C语言的同学,应该可以理解的非常的快,这其实和C语言数组取value是一样的。以下是一些示例:


示例代码1

import numpy as np
# 创建一个示例数组
arr = np.array([1, 2, 3, 4, 5])
# 访问第一个元素
print(arr[0])  # 输出: 1
# 访问第三个元素
print(arr[2])  # 输出: 3


5ffa75005bb14ab3bc9c8841b05aecc9.png

2.3 示例代码2

您还可以使用负索引从数组末尾开始访问元素,例如 -1 表示最后一个元素,-2 表示倒数第二个元素,以此类推。

# 访问最后一个元素
print(arr[-1])  # 输出: 5
# 访问倒数第二个元素
print(arr[-2])  # 输出: 4


954a59c8aa184581a9ecb1b94e0d8e2b.png

2.4 示例代码3

可以使用slice函数进行指定范围和step索引

s = slice(2,7,2)
arr = np.arange(10)
print(arr)
print(arr[s])


04b0d64c3ce042cd99d85b24e1aedf5b.png


三、数组切片


3.1 最基础的数组切片

NumPy是一个强大的Python库,用于科学计算和数据分析,它提供了用于处理多维数组的功能。数组切片是一种在NumPy中常用的技术,用于获取数组的子集。让我们逐步介绍NumPy数组切片的格式、用法和示例代码。


1. 切片格式:

numpy的基础切片其实和我们的python的list,元组这些切片是一样的!但他还有其他的高级用法

NumPy数组切片的基本格式如下:

array[start:stop:step]

1.start:起始索引(包含在切片中),默认为0。

2.stop:终止索引(不包含在切片中)。

3.step:步长,用于控制切片的间隔,可以为负数。

那么多于多维数组,之间使用逗号隔开

[维度1切片,维度2切片...]


2. 如何使用:

通过这个基本格式,您可以创建一个切片对象,然后应用到NumPy数组上,以获取所需的子数组。


3. 示例代码:

下面是一些示例代码,演示如何使用NumPy数组切片:

import numpy as np
# 创建一个NumPy数组
arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# 获取索引1到4之间的元素(不包括索引4)
slice1 = arr[1:4]
print(slice1)  # 输出:[1 2 3]
# 获取索引2以及之后的元素
slice2 = arr[2:]
print(slice2)  # 输出:[2 3 4 5 6 7 8 9]
# 获取索引0到8之间,步长为2的元素
slice3 = arr[0:8:2]
print(slice3)  # 输出:[0 2 4 6]
# 使用负数索引,获取倒数第三个元素到末尾
slice4 = arr[-3:]
print(slice4)  # 输出:[7 8 9]
# 从末尾开始逆序获取数组
slice5 = arr[::-1]
print(slice5)  # 输出:[9 8 7 6 5 4 3 2 1 0]
# 使用二维数组的切片
arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
slice6 = arr2d[:2, 1:]
print(slice6)
# 输出:
# [[2 3]
#  [5 6]]


a6dbe51f6e3e47bca7585f01d2a8eb84.png

这些示例演示了如何使用NumPy数组切片来获取不同范围的数组元素,以及如何应用于多维数组。切片是NumPy中强大且灵活的工具,可用于数据处理和分析中的各种任务。


3.2 切片中包括省略号

基本格式

NumPy数组切片的"…"(省略号)是一种特殊的切片操作,通常用于处理多维数组,其中维度较多,但只想在其中的一个或多个维度上执行切片操作。省略号可以用来代替一系列冒号(:)来表示多个维度的切片。

格式:

array[…, slice1, slice2, …]

省略号可以用于代替任意数量的冒号,以便对多维数组进行切片。以下是省略号的所有用法示例:


1. 单个省略号示例:

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
# 使用单个省略号切片第一个维度
slice1 = arr[...]
print(slice1)
# 输出:
# [[[ 1  2  3]
#   [ 4  5  6]]
#
#  [[ 7  8  9]
#   [10 11 12]]
# 使用单个省略号切片第二个维度
slice2 = arr[:, ...]
print(slice2)
# 输出:
# [[[ 1  2  3]
#   [ 4  5  6]]
#
#  [[ 7  8  9]
#   [10 11 12]]


da71159f3c6c4007b9579aeeec39c669.png

2. 多个省略号示例:

import numpy as np
arr = np.random.rand(2, 3, 4, 5)
# 使用多个省略号同时切片多个维度
slice3 = arr[..., 1, 2, ...]
print(slice3.shape)
# 输出:(2, 3)
# 使用多个省略号和其他切片
slice4 = arr[:, ..., 1:4, 2]
print(slice4.shape)
# 输出:(2, 3, 3)


520bd63ec58249b49ab39e3f0ff5c167.png

这些示例演示了如何使用省略号来简化多维数组的切片操作。省略号可以用来代替多个冒号,从而更清晰和紧凑地表达切片操作,特别适用于高维数组的情况。


总结


在本教程中,我们介绍了如何使用NumPy进行数组切片和索引。这些功能使您能够有效地访问和操作NumPy数组中的元素。关键要点包括:

使用索引访问单个元素或使用负索引访问数组末尾的元素。
使用数组切片选择数组的特定部分,可以指定起始索引、结束索引和步长。
对于多维数组,可以使用逗号分隔的索引来访问不同维度。


这些技巧对于数据处理、分析和科学计算非常有用,帮助您轻松处理大量数据并提取感兴趣的信息。

希望本教程对您理解NumPy中的数组切片和索引有所帮助。继续学习和实践,以更好地掌握NumPy库的强大功能。

目录
打赏
0
0
0
0
61
分享
相关文章
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
Python/Anaconda双方案加持!Jupyter Notebook全平台下载教程来袭
Jupyter Notebook 是一款交互式编程与数据科学分析工具,支持40多种编程语言,广泛应用于机器学习、数据清洗和学术研究。其核心优势包括实时执行代码片段、支持Markdown文档与LaTeX公式混排,并可导出HTML/PDF/幻灯片等格式。本文详细介绍了Jupyter Notebook的软件定位、特性、安装方案(Anaconda集成环境与原生Python+PIP安装)、首次运行配置及常见问题解决方案,帮助用户快速上手并高效使用该工具。
milvus-use教程 python
本项目参考vanna项目,获取数据库元数据和问题SQL对,存入Milvus向量数据库,并进行相似性检索。采用m3e-large嵌入模型,通过DatabaseManager类实现数据库连接持久化,MilvusVectorStore类封装了Milvus操作方法,如创建集合、添加数据和查询。项目提供init_collections、delete_collections等文件用于初始化、删除和管理集合。所用Milvus版本较新,API与vanna项目不兼容。 [项目地址](https://gitee.com/alpbeta/milvus-use)
113 9
Python语法糖详解教程
《Python语法糖详解教程》介绍了编程语言中的“语法糖”,即通过特殊语法形式简化代码,使代码更简洁、易读和高效。文章详细解析了列表推导式、字典推导式、元组解包、条件表达式、with语句和装饰器等核心语法糖,并提供了具体示例和最佳实践指南。通过这些技巧,开发者可以在保持底层功能不变的前提下,显著提升开发效率和代码质量。
48 8
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
601 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
113 8
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-1
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-2
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
【100天精通Python】Day59:Python 数据分析_Pandas高级功能-多层索引创建访问切片和重塑操作,pandas自定义函数和映射功能
【100天精通Python】Day59:Python 数据分析_Pandas高级功能-多层索引创建访问切片和重塑操作,pandas自定义函数和映射功能
165 2