BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume


横向比对

对比项 Apache SeaTunnel DataX Apache Sqoop Apache Flume Flink CDC
部署难度 容易 容易 中等,依赖于 Hadoop 生态系统 容易 中等,依赖于 Hadoop 生态系统
运行模式 分布式,也支持单机 单机 本身不是分布式框架,依赖 Hadoop MR 实现分布式 分布式,也支持单机 分布式,也支持单机
健壮的容错机制 无中心化的高可用架构设计,有完善的容错机制 易受比如网络闪断、数据源不稳定等因素影响 MR 模式重,出错处理麻烦 有一定的容错机制 主从模式的架构设计,容错粒度比较粗,容易造成延时
支持的数据源丰富度 支持过 100 种数据源,包括 MySQL、PostgreSQL、Oracle、SQLServer、Hive、S3、RedShift、HBase、Clickhouse 等 支持约 20+ 种数据源,包括 MySQL、ODPS、PostgreSQL、Oracle、Hive 等 仅支持几种数据源,如 MySQL、Oracle、DB2、Hive、HBase、S3 等 支持几种数据源,如 Kafka、File、HTTP、Avro、HDFS、Hive、HBase 等 支持MySQL、PostgresSQL、MongoDB、SQLServer 等 10+ 种数据源
内存资源占用 少多 多多 中等多 多多 少多
数据库连接占用 少(可以共享 JDBC 连接) 多多 多多 多(每个表需一个连接) 多多
自动建表 支持 不支持 不支持 不支持 不支持
整库同步 支持 不支持 不支持 不支持 不支持(每个表需配置一次)
断点续传 支持 不支持 不支持 支持 支持
多引擎支持 支持 SeaTunnel Zeta、Flink、Spark 3 个引擎选其一作为运行时 只能运行在 DataX 自己引擎上 自身无引擎,需运行在 Hadoop MR 上,任务启动速度非常慢 支持 Flume 自身引擎 只能运行在 Flink 上
数据转换算子(Transform) 支持 Copy、Filter、Replace、Split、SQL 、自定义 UDF 等算子 支持补全,过滤等算子,可以 groovy 自定义算子 只支持基本算子,如列映射、数据类型转换和数据过滤 只支持 Interceptor 方式简单转换操作 支持 Filter、Null、SQL、自定义 UDF 等算子
单机性能 比 DataX 高 40% - 80% 较好 一般 一般 较好
离线同步 支持 支持 支持 支持 支持
增量同步 支持 支持 支持 支持 支持
实时同步 支持 不支持 不支持 支持 支持
CDC同步 支持 不支持 不支持 不支持 支持
批流一体 支持 不支持 不支持 不支持 支持
精确一致性 MySQL、Kafka、Hive、HDFS、File 等连接器支持 不支持 不支持 不支持,提供一定程度的一致性 MySQL、PostgreSQL、Kakfa 等连接器支持
可扩展性 插件机制非常易扩展 易扩展 扩展性有限,Sqoop主要用于将数据在Apache Hadoop和关系型数据库之间传输 易扩展 易扩展
统计信息
Web UI
社区活跃度 非常活跃 非常不活跃 已经从 Apache 退役 非常不活跃 非常活跃

初识Apache SeaTunnel

https://seatunnel.apache.org/

Apache SeaTunnel 是一个由国人主导贡献到 Apache 基金会的分布式数据集成产品,核心特性:

  1. 超高性能:SeaTunnel 能够每天稳定高效地同步万亿级数据,适用于大规模数据处理。
  2. 全面的数据源支持:SeaTunnel 支持数百种常用的数据源,包括不同版本和新兴技术,满足用户在各种数据源之间的同步需求。
  3. 多种同步场景:SeaTunnel 能够处理离线-全量同步、离线-增量同步、CDC(Change Data Capture)、实时同步和全库同步等多种复杂同步场景。
  4. 资源高效:与传统数据集成工具相比,SeaTunnel 需要更少的计算资源和 JDBC 连接资源,减轻企业在资源方面的负担。
  5. 质量与监控:SeaTunnel 提供了监控机制,确保数据同步过程中的质量和准确性,防止数据丢失或重复。
  6. 简化技术栈:SeaTunnel 降低了技术栈的复杂性,用户无需针对不同技术组件开发专门的同步程序。
  7. 统一管理:SeaTunnel 支持离线同步和实时同步的统一管理,简化了开发和维护过程。
    SeaTunnel 旨在解决数据集成领域的关键问题,提供高性能、高可靠性和易用性的数据同步解决方案。

SeaTunnel 产品实现了高可靠性、集中管理、可视化监控等一体的数据集成统一平台。

  • 平台可以实现了标准化、规范化、界面化操作;
  • 实现了数据同步高速化,全量到增量无锁化自动切换,目前已经支持 100+ 种数据源;
  • 支持整库同步、表结构自动变更;
  • 同时无中心化设计确保系统的高可用机制,整体上做到简单易用,开箱即用。


相关文章
|
2月前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
394 33
The Past, Present and Future of Apache Flink
|
4月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
1022 13
Apache Flink 2.0-preview released
|
10天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
313 12
Flink CDC YAML:面向数据集成的 API 设计
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
172 3
|
5月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
6月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
385 2
|
5月前
|
消息中间件 资源调度 API
Apache Flink 流批融合技术介绍
本文源自阿里云高级研发工程师周云峰在Apache Asia Community OverCode 2024的分享,内容涵盖从“流批一体”到“流批融合”的演进、技术解决方案及社区进展。流批一体已在API、算子和引擎层面实现统一,但用户仍需手动配置作业模式。流批融合旨在通过动态调整优化策略,自动适应不同场景需求。文章详细介绍了如何通过量化指标(如isProcessingBacklog和isInsertOnly)实现这一目标,并展示了针对不同场景的具体优化措施。此外,还概述了社区当前进展及未来规划,包括将优化方案推向Flink社区、动态调整算子流程结构等。
480 31
Apache Flink 流批融合技术介绍
|
5月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
811 2
Flink CDC:新一代实时数据集成框架
|
4月前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
119 1
|
4月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
353 0

热门文章

最新文章

推荐镜像

更多