BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: BDCC - 数据集成领域的主流中间件_ Apache SeaTunnel vs Flink CDC vs DataX vs Apache Sqoop vs Apache Flume


横向比对

对比项 Apache SeaTunnel DataX Apache Sqoop Apache Flume Flink CDC
部署难度 容易 容易 中等,依赖于 Hadoop 生态系统 容易 中等,依赖于 Hadoop 生态系统
运行模式 分布式,也支持单机 单机 本身不是分布式框架,依赖 Hadoop MR 实现分布式 分布式,也支持单机 分布式,也支持单机
健壮的容错机制 无中心化的高可用架构设计,有完善的容错机制 易受比如网络闪断、数据源不稳定等因素影响 MR 模式重,出错处理麻烦 有一定的容错机制 主从模式的架构设计,容错粒度比较粗,容易造成延时
支持的数据源丰富度 支持过 100 种数据源,包括 MySQL、PostgreSQL、Oracle、SQLServer、Hive、S3、RedShift、HBase、Clickhouse 等 支持约 20+ 种数据源,包括 MySQL、ODPS、PostgreSQL、Oracle、Hive 等 仅支持几种数据源,如 MySQL、Oracle、DB2、Hive、HBase、S3 等 支持几种数据源,如 Kafka、File、HTTP、Avro、HDFS、Hive、HBase 等 支持MySQL、PostgresSQL、MongoDB、SQLServer 等 10+ 种数据源
内存资源占用 少多 多多 中等多 多多 少多
数据库连接占用 少(可以共享 JDBC 连接) 多多 多多 多(每个表需一个连接) 多多
自动建表 支持 不支持 不支持 不支持 不支持
整库同步 支持 不支持 不支持 不支持 不支持(每个表需配置一次)
断点续传 支持 不支持 不支持 支持 支持
多引擎支持 支持 SeaTunnel Zeta、Flink、Spark 3 个引擎选其一作为运行时 只能运行在 DataX 自己引擎上 自身无引擎,需运行在 Hadoop MR 上,任务启动速度非常慢 支持 Flume 自身引擎 只能运行在 Flink 上
数据转换算子(Transform) 支持 Copy、Filter、Replace、Split、SQL 、自定义 UDF 等算子 支持补全,过滤等算子,可以 groovy 自定义算子 只支持基本算子,如列映射、数据类型转换和数据过滤 只支持 Interceptor 方式简单转换操作 支持 Filter、Null、SQL、自定义 UDF 等算子
单机性能 比 DataX 高 40% - 80% 较好 一般 一般 较好
离线同步 支持 支持 支持 支持 支持
增量同步 支持 支持 支持 支持 支持
实时同步 支持 不支持 不支持 支持 支持
CDC同步 支持 不支持 不支持 不支持 支持
批流一体 支持 不支持 不支持 不支持 支持
精确一致性 MySQL、Kafka、Hive、HDFS、File 等连接器支持 不支持 不支持 不支持,提供一定程度的一致性 MySQL、PostgreSQL、Kakfa 等连接器支持
可扩展性 插件机制非常易扩展 易扩展 扩展性有限,Sqoop主要用于将数据在Apache Hadoop和关系型数据库之间传输 易扩展 易扩展
统计信息
Web UI
社区活跃度 非常活跃 非常不活跃 已经从 Apache 退役 非常不活跃 非常活跃

初识Apache SeaTunnel

https://seatunnel.apache.org/

Apache SeaTunnel 是一个由国人主导贡献到 Apache 基金会的分布式数据集成产品,核心特性:

  1. 超高性能:SeaTunnel 能够每天稳定高效地同步万亿级数据,适用于大规模数据处理。
  2. 全面的数据源支持:SeaTunnel 支持数百种常用的数据源,包括不同版本和新兴技术,满足用户在各种数据源之间的同步需求。
  3. 多种同步场景:SeaTunnel 能够处理离线-全量同步、离线-增量同步、CDC(Change Data Capture)、实时同步和全库同步等多种复杂同步场景。
  4. 资源高效:与传统数据集成工具相比,SeaTunnel 需要更少的计算资源和 JDBC 连接资源,减轻企业在资源方面的负担。
  5. 质量与监控:SeaTunnel 提供了监控机制,确保数据同步过程中的质量和准确性,防止数据丢失或重复。
  6. 简化技术栈:SeaTunnel 降低了技术栈的复杂性,用户无需针对不同技术组件开发专门的同步程序。
  7. 统一管理:SeaTunnel 支持离线同步和实时同步的统一管理,简化了开发和维护过程。
    SeaTunnel 旨在解决数据集成领域的关键问题,提供高性能、高可靠性和易用性的数据同步解决方案。

SeaTunnel 产品实现了高可靠性、集中管理、可视化监控等一体的数据集成统一平台。

  • 平台可以实现了标准化、规范化、界面化操作;
  • 实现了数据同步高速化,全量到增量无锁化自动切换,目前已经支持 100+ 种数据源;
  • 支持整库同步、表结构自动变更;
  • 同时无中心化设计确保系统的高可用机制,整体上做到简单易用,开箱即用。


相关文章
|
3月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
693 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
434 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
736 9
Apache Flink:从实时数据分析到实时AI
|
5月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
664 0
|
4月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1705 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
5月前
|
存储 人工智能 数据处理
对话王峰:Apache Flink 在 AI 时代的“剑锋”所向
Flink 2.0 架构升级实现存算分离,迈向彻底云原生化,支持更大规模状态管理、提升资源效率、增强容灾能力。通过流批一体与 AI 场景融合,推动实时计算向智能化演进。生态项目如 Paimon、Fluss 和 Flink CDC 构建湖流一体架构,实现分钟级时效性与低成本平衡。未来,Flink 将深化 AI Agents 框架,引领事件驱动的智能数据处理新方向。
648 6
|
5月前
|
消息中间件 存储 Kafka
Apache Flink错误处理实战手册:2年生产环境调试经验总结
本文由 Ververica 客户成功经理 Naci Simsek 撰写,基于其在多个行业 Flink 项目中的实战经验,总结了 Apache Flink 生产环境中常见的三大典型问题及其解决方案。内容涵盖 Kafka 连接器迁移导致的状态管理问题、任务槽负载不均问题以及 Kryo 序列化引发的性能陷阱,旨在帮助企业开发者避免常见误区,提升实时流处理系统的稳定性与性能。
562 0
Apache Flink错误处理实战手册:2年生产环境调试经验总结
|
6月前
|
Java 关系型数据库 MySQL
springboot项目集成dolphinscheduler调度器 实现datax数据同步任务
springboot项目集成dolphinscheduler调度器 实现datax数据同步任务
710 2
|
10月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
1256 1
Apache Flink 2.0.0: 实时数据处理的新纪元

热门文章

最新文章

推荐镜像

更多