推荐系统:从经典模型到深度学习,你需要掌握什么?

简介: 推荐系统:从经典模型到深度学习,你需要掌握什么?


🌟 协同过滤:最经典的推荐模型,我们应该掌握什么?

协同过滤是推荐系统领域最经典的模型之一,它基于用户之间或物品之间的相似性,将用户对物品的喜好转化为对其他物品的喜好,从而实现个性化推荐。我们应该掌握以下几点:

  • 用户-物品评分矩阵:它是协同过滤模型中最基础的数据结构,记录了用户对物品的评分,但大多数情况下是稀疏的。
  • 相似度计算方法:常见的相似度计算方法包括余弦相似度、皮尔逊相关系数和欧几里得距离等,选择合适的相似度计算方法对模型效果有重要影响。
  • 预测方法:根据用户对物品的历史评分及物品之间的相似度,可以预测用户对未评分物品的评分。
  • 评价指标:评价模型的好坏通常采用RMSE、MAE和精度等指标,同时也需要注意过拟合问题。

🌟 深度学习革命:深度学习推荐模型发展的整体脉络是怎样的?

深度学习的出现为推荐系统带来了新的思路和方法。深度学习模型的主要优点是能够自动学习高阶特征和非线性关系,从而得到更准确的推荐结果。深度学习推荐模型的发展脉络主要包括以下几个阶段:

  • 基于DNN的推荐模型:如Deep Crossing、Wide&Deep等,通过引入DNN模型处理用户和物品的特征,取得了较好的效果。
  • 基于序列模型的推荐模型:如NCF、GRU4Rec等,考虑到用户行为序列的影响,采用了序列模型对用户行为进行建模。
  • 基于注意力机制的推荐模型:如DIN、DIEN等,通过引入注意力机制实现了对用户兴趣的更细粒度建模。
  • 基于强化学习的推荐模型:如DRL-Rec、ES-Rec等,引入强化学习方法实现了更加自主学习和优化的推荐过程。

🌟 TensorFlow入门和环境配置

TensorFlow是目前流行的深度学习框架之一,它具有易用性、可扩展性和高性能等优点。在使用TensorFlow进行深度学习模型的实现和训练之前,需要进行环境配置和基本使用方法的掌握,包括以下几个方面:

  • 安装TensorFlow:可以通过pip等方式进行安装,也可以安装Anaconda集成环境。
  • TensorFlow基本概念和使用方法:了解TensorFlow的张量、计算图、会话等基本概念和使用方法,能够实现基本的数学运算和模型训练。
  • TensorFlow数据输入管道:了解如何使用TensorFlow提供的数据输入API(如Dataset)进行数据的处理和输入,提高模型训练效率和数据处理能力。
  • TensorFlow模型保存和恢复:熟悉如何使用TensorFlow的保存和恢复功能,保存模型权重和结构以便后续使用和迁移学习。

🌟 模型特征、训练样本的处理

特征工程是模型训练的重要组成部分,它的目的是从原始数据中提取有效的特征并转换为模型输入。在推荐系统中,特征工程需要处理用户、物品和上下文等多维度的信息,包括以下几个方面:

  • 特征提取和处理:包括数值型特征、离散型特征、文本型特征的提取和处理,以及特征的缺失值填充、归一化等处理。
  • 特征选择和降维:如果特征过多或存在冗余,需要进行特征选择和降维,以提高模型效果和训练速度。
  • 样本处理和采样:在训练模型时,需要从原始数据中抽取训练样本,采用合适的采样方式和样本划分策略可以提高模型的泛化能力和准确率。
  • 数据分析和可视化:通过数据分析和可视化可以深入理解数据的分布和特征,同时也能够发现数据中存在的问题和异常。

🌟 Embedding+MLP:如何用TensorFlow实现经典的深度学习模型?

Embedding+MLP模型是深度学习推荐模型中最经典和基础的一种,它将用户和物品的离散特征通过Embedding方式转换为低维稠密向量,然后通过多层感知机(MLP)进行特征组合和映射,最终得到用户对物品的预测评分。在使用TensorFlow实现Embedding+MLP模型时,需要掌握以下几个方面:

  • Embedding层的使用:TensorFlow提供了Embedding层的API,可以方便地将离散特征转换为稠密向量,并对Embedding矩阵进行训练和更新。
  • MLP的实现和调参:可以使用TensorFlow的高层API(如Keras)或低层API(如tf.layers和tf.nn)实现多层感知机,对MLP的结构和超参数进行调参以达到最佳效果。
  • 模型训练和评价:使用TensorFlow的优化器和损失函数对模型进行训练,在验证集或测试集上进行模型评价和调参,可以使用RMSE、MAE和精度等指标进行评价。

🌟 Wide&Deep:怎样让你的模型既有想象力又有记忆力?

Wide&Deep模型是一种将线性模型和深度模型结合的推荐模型,它既可以捕捉用户和物品之间的线性关系,又能够学习到隐含的高阶特征和非线性关系,同时也兼顾了模型的记忆能力和泛化能力。要掌握Wide&Deep模型,需要了解以下几个方面:

  • Wide部分:Wide部分采用线性模型来表示用户和物品之间的关系,它能够从数量较少但频繁出现的特征中学习到模式,使用了交叉特征的方式学习特征之间的相互作用。
  • Deep部分:Deep部分采用多层感知机(MLP)来学习用户和物品的高阶特征和非线性关系,通过Embedding将离散特征转换为稠密向量,并在多个全连接层中进行特征组合和映射。
  • Wide&Deep模型的集成:通过将Wide部分和Deep部分的输出进行加权求和,实现了线性模型和深度模型的优势互补,提高了模型的预测准确率。
    *模型训练和评价:可以使用TensorFlow实现Wide&Deep模型,采用常见的优化器和损失函数进行模型训练和调参,同时也需要使用合适的评价指标对模型进行评价和优化,例如AUC、logloss等。
相关文章
|
3月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
319 27
|
2月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
239 0
|
18天前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
55 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
本文以 MNIST 手写数字识别为切入点,介绍了深度学习的基本原理与实现流程,帮助读者建立起对神经网络建模过程的系统性理解。
326 15
AI 基础知识从 0.2 到 0.3——构建你的第一个深度学习模型
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从 0.3 到 0.4——如何选对深度学习模型?
本系列文章从机器学习基础出发,逐步深入至深度学习与Transformer模型,探讨AI关键技术原理及应用。内容涵盖模型架构解析、典型模型对比、预训练与微调策略,并结合Hugging Face平台进行实战演示,适合初学者与开发者系统学习AI核心知识。
290 15
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
483 3
|
4月前
|
机器学习/深度学习 存储 PyTorch
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
本文通过使用 Kaggle 数据集训练情感分析模型的实例,详细演示了如何将 PyTorch 与 MLFlow 进行深度集成,实现完整的实验跟踪、模型记录和结果可复现性管理。文章将系统性地介绍训练代码的核心组件,展示指标和工件的记录方法,并提供 MLFlow UI 的详细界面截图。
154 2
PyTorch + MLFlow 实战:从零构建可追踪的深度学习模型训练系统
|
8月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
|
5月前
|
搜索推荐 测试技术 C语言
NPU适配推荐系统GR模型流程
本示例将开源Generative Recommendations模型迁移至NPU训练,并通过HSTU融合算子优化性能。基于Atlas 800T A2平台,使用PyTorch 2.1.0、Python 3.11.0等环境。文档涵盖容器启动、依赖安装、算子适配、源码修改、数据预处理及配置文件设置等内容。性能测试显示,使用HSTU融合算子可显著降低端到端耗时(如ml_1m数据集单step从346ms降至47.6ms)。
|
10月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
395 73