从0到1介绍一下开源大数据比对平台dataCompare

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 从0到1介绍一下开源大数据比对平台dataCompare

1.背景&现状

在大数据领域也已经工作了多年,无论所待过的大公司还是小公司,都会遇到集群升级迁移过程中据搬迁等相关工作,经常会碰到搬迁之后,搬迁的数据是不是能对的上呢?两边数据究竟是不是一致的呢?如果不一致,那又有哪些差异呢?能不能更快地找到差异解决问题呢?

之前经常每个开发的同学自己写一些SQL 脚本进行去比对的,而且也没有一个评估标准。这样的话效率比较低下。

其实在《阿里巴巴大数据之路》这本其实有提到这样一个平台,但是由于没有对外使用,所以书中介绍比较简单。因此根据以往的工作经历,开发了一个大数据比对平台,用来辅助验证数据,命名为dataCompare。

主要解决如下几个问题:

(1)验证数据、数据比对,浪费极大的人力成本,一张表数据从对比数据到找差异数据可能要花1-2小时时间,如果再乘以表的数量,时间成本基本上就是2H*N(N为表的数量)

(2)没有一套标准,验证的结果难以评估,每个对比的同学对比标准也不支持,有的可能看看数据量对上就行了,但是其实数据并不一定能对的上

(3)经常是写一大段复杂的SQL,通过查看SQL运行的结果来进行判断是否有问题,通常还需要去调试SQL保证SQL能正常运行

2.目标

为了解决上述问题因此开发了一个大数据对比平台——dataCompare

(1)采用界面交互、勾选的方式或者低代码的方式即可实现自动化数据校验对比,避免复杂SQL调试

(2)建立一套统一的数据校验标准,避免不同开发同学选取的标准不一致,比如:量级对比、一致性对比

(3)提升数据团队的验数比对效率,至少提升50%左右

3.系统核心功能介绍

目前dataCompare 已经完成了如下功能:

(1)界面级交互数据对比任务配置,低代码少量配置快速生成对比任务

(2)量级对比、一致性对比、自动化差异case发现

(3)目前已经支持MySQL、Hive、Doris 等JDBC 数据库

对比流程如下:

(1)新建库信息

(2)选择需要对比数据信息

(3)执行对比任务

(4)差异发现

自动筛选出差异case,便于排查问题

4.系统架构设计

前端主要是针对数据校验对比选择表和字段,生成校验任务。

后端主要是采用spring boot、Mybatis 将前端的配置数据写入MySQL表里,然后启动MapReduce或者Spark 任务来进行校验,目前支持的引擎包括:MapReduce、Spark,数据存储包括:HDFS、Hive等,后续考虑扩展更多的数据引擎和存储引擎。

5.系统功能演示

(1)主页

(2)数据库配置页

(3)对比信息配置

(4)对比结果展示

(5)差异case自动发现

6.后续规划

(1)陌生表数据探测,包括:枚举值探测、范围值探测、主键hash 探测

(2)对比任务定时自动调度,对比结果报告自动发送至邮箱等多个渠道

(3)异源数据对比,目前本项目已经实现了同源数据对比功能,后续考虑扩展异源项目对比

7.核心代码开源

https://github.com/zhugezifang/dataCompare

https://gitee.com/ZhuGeZiFang/data-compare


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
298 0
|
12天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
3月前
|
分布式计算 算法 大数据
大数据时代的智能研发平台需求与阿里云DIDE的定位
阿里云DIDE是一站式智能大数据开发与治理平台,致力于解决传统大数据开发中的效率低、协同难等问题。通过全面整合资源、高度抽象化设计及流程自动化,DIDE显著提升数据处理效率,降低使用门槛,适用于多行业、多场景的数据开发需求,助力企业实现数字化转型与智能化升级。
101 1
|
7月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
462 2
|
8月前
|
SQL 人工智能 大数据
【4月重点功能发布】阿里云大数据+ AI 一体化平台
【4月重点功能发布】阿里云大数据+ AI 一体化平台
179 0
|
1月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
111 14
|
2月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
99 0
|
3月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
111 4
|
3月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
242 3
|
1月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
109 14

热门文章

最新文章