用户画像系列——Lookalike在营销圈选扩量中的应用

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 用户画像系列——Lookalike在营销圈选扩量中的应用

用户画像系列——当我们聊用户画像,我们在聊什么?

介绍了用户画像的应用场景:

(1)个性化推荐

通过用户标签给用户推荐合适的商品或者内容

(2)营销圈选

根据组合条件(比如说:性别女、年龄25-30、都市白领)圈选出一部分用户,给他们发送push或者短信告知他们最近有什么活动之类的。

(3)策略引擎

根据用户标签命中不同的策略,比如说:高消费人员有奢侈品入口通道

(4)算法模型

(5)画像报告

背景:

今天这篇文章主要分享下用户画像在营销圈选中的应用,后续会继续聊其他几个方向的应用场景。

营销圈选,顾名思义就是根据一些组合条件圈选出合适的人群,比如说:最近要搞女性的美妆促销活动。那应该很容易理解,我选出这方面需求的女性用户,然后通过发送push弹窗或者短信或者邮件等等方式来告诉用户,我们有一个美妆大促活动有什么什么优惠,然后让你来参加。

问题:

但是会出现一些问题,比如说:平台用户总共有10w,但是我根据组合条件筛选(女性用户、都市白领、年龄在25-30岁之间)出来只有5000。如果只是给这5000人发送这个需求显然是没办法达到我的要求。那有没有什么办法呢?

比如说:发现圈选的目标用户5000里面,有很多相似的地方,喜欢美妆对于满减活动也比较敏感,然后平台里面10w 用户也有不少男性用户虽然年龄超过30岁了,但是对于美妆也非常感兴趣(可能是给女朋友买?)

那想到一种办法是不是可以通过这5000用户,去全量用户里面找和这些用户比较相似的一些人呢?通过这5000个用户找到和他们相似的2.5w个用户,加起来3w,给这3w人发送营销活动。

解决方案:

上文中提到的5000个用户称呼为“种子用户”,平台用户10w称之为所有用户(DMP用户),然后我们扩充出来的3w用户称之为“相似用户”或者"扩展用户"

那究竟如何才能根据种子用户找到这部分相似用户呢?

Lookalike整体业务流程如下:

(1)根据平台的全量构建标签,也是用户画像标签的加工(dws_user_info_profile)

(2)根据构建的用户标签进行向量化,可以参考Spark Word2Vec构建向量化(dws_user_info_profile_embe),具体内容可参考:

https://dblab.xmu.edu.cn/blog/1292/

(3)将向量化的用户特征数据写入ElasticSearch,此处考虑用Spark 进行批量写入,提升性能,至此用户量化和入库工作就已经完成了

(4)在营销平台根据圈选条件(比如说:女性、年龄25-30岁、喜欢美妆),最后得到种子用户的id列表

(5)根据种子用户关联用户向量特征得到可以匹配上的用户的向量特征,种子用户id,种子用户向量

(6)根据向量特征去ElasticSearch 里面进行扩量

ElasticSearch 创建索引mapping 主要有两个字段,userId和vector_embedding(dense_vector),其中vector_embedding 为dense_vector类型

ElasticSearch 向量化使用参考:https://cloud.tencent.com/developer/article/1774216

通过使用ES向量化查询功能完成扩量,具体实现会涉及到扩量查询采用Spark 提升并发性,通过配置扩量倍数参数来获取每一个种子用户的Top N 扩量,最终将扩量后的数据写入HDFS目录同时通知营销平台扩量完成。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
86 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
【图像生成技术】人工智能在广告营销的革新:图像生成技术的应用与实践代码示例
随着人工智能技术的飞速发展,广告营销行业迎来了前所未有的变革。图像生成技术,作为AI领域的一颗璀璨明星,正被广泛应用于创造个性化、高吸引力的产品展示图、海报乃至宣传视频,以精准对接目标受众,显著提升广告的转化率和整体营销效果。本文将深入探讨这一技术的应用场景,并通过一个简单的代码示例,展示如何利用深度学习框架TensorFlow来实现创意图像的自动生成。
108 4
|
5月前
|
人工智能 自然语言处理 监控
科技云报道:产业为根大模型应用为擎,容联云推动企业营销服场景重塑
小切口大纵深,容联云以大模型驱动企业营销场景重构
科技云报道:产业为根大模型应用为擎,容联云推动企业营销服场景重塑
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能在营销中的应用非常广泛
【5月更文挑战第15天】人工智能在营销中的应用非常广泛
104 3
|
7月前
|
小程序 安全 数据挖掘
探索隐私计算与精准营销的应用创新——产品面对面系列直播第三期
探索隐私计算与精准营销的应用创新——产品面对面系列直播第三期
237 11
|
7月前
|
人工智能 自然语言处理 搜索推荐
营销大模型应用落地,AI广告投手「归一妙计」重新定义营销可能性
归一智能基于「利欧归一」营销领域大模型,训练出了适配各媒体平台投放工作流的AI Agent「归一妙计」,实现8小时内完成万词万创意万落地页。
272 0
|
人工智能 安全 数据建模
G-Media 2023 | 每日互动方毅谈大模型在品牌营销领域的应用
在G-Media 2023,每日互动(个推)展示了卓越的数据营销服务能力,运用AIGC和大模型技术,通过“智选人群”功能为品牌数字营销提供了更强大的工具和解决方案。
190 2
|
关系型数据库 分布式数据库 PolarDB
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
620 0
|
搜索推荐 关系型数据库 数据库
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .
325 0
|
机器学习/深度学习