用户画像系列——Lookalike在营销圈选扩量中的应用

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 用户画像系列——Lookalike在营销圈选扩量中的应用

用户画像系列——当我们聊用户画像,我们在聊什么?

介绍了用户画像的应用场景:

(1)个性化推荐

通过用户标签给用户推荐合适的商品或者内容

(2)营销圈选

根据组合条件(比如说:性别女、年龄25-30、都市白领)圈选出一部分用户,给他们发送push或者短信告知他们最近有什么活动之类的。

(3)策略引擎

根据用户标签命中不同的策略,比如说:高消费人员有奢侈品入口通道

(4)算法模型

(5)画像报告

背景:

今天这篇文章主要分享下用户画像在营销圈选中的应用,后续会继续聊其他几个方向的应用场景。

营销圈选,顾名思义就是根据一些组合条件圈选出合适的人群,比如说:最近要搞女性的美妆促销活动。那应该很容易理解,我选出这方面需求的女性用户,然后通过发送push弹窗或者短信或者邮件等等方式来告诉用户,我们有一个美妆大促活动有什么什么优惠,然后让你来参加。

问题:

但是会出现一些问题,比如说:平台用户总共有10w,但是我根据组合条件筛选(女性用户、都市白领、年龄在25-30岁之间)出来只有5000。如果只是给这5000人发送这个需求显然是没办法达到我的要求。那有没有什么办法呢?

比如说:发现圈选的目标用户5000里面,有很多相似的地方,喜欢美妆对于满减活动也比较敏感,然后平台里面10w 用户也有不少男性用户虽然年龄超过30岁了,但是对于美妆也非常感兴趣(可能是给女朋友买?)

那想到一种办法是不是可以通过这5000用户,去全量用户里面找和这些用户比较相似的一些人呢?通过这5000个用户找到和他们相似的2.5w个用户,加起来3w,给这3w人发送营销活动。

解决方案:

上文中提到的5000个用户称呼为“种子用户”,平台用户10w称之为所有用户(DMP用户),然后我们扩充出来的3w用户称之为“相似用户”或者"扩展用户"

那究竟如何才能根据种子用户找到这部分相似用户呢?

Lookalike整体业务流程如下:

(1)根据平台的全量构建标签,也是用户画像标签的加工(dws_user_info_profile)

(2)根据构建的用户标签进行向量化,可以参考Spark Word2Vec构建向量化(dws_user_info_profile_embe),具体内容可参考:

https://dblab.xmu.edu.cn/blog/1292/

(3)将向量化的用户特征数据写入ElasticSearch,此处考虑用Spark 进行批量写入,提升性能,至此用户量化和入库工作就已经完成了

(4)在营销平台根据圈选条件(比如说:女性、年龄25-30岁、喜欢美妆),最后得到种子用户的id列表

(5)根据种子用户关联用户向量特征得到可以匹配上的用户的向量特征,种子用户id,种子用户向量

(6)根据向量特征去ElasticSearch 里面进行扩量

ElasticSearch 创建索引mapping 主要有两个字段,userId和vector_embedding(dense_vector),其中vector_embedding 为dense_vector类型

ElasticSearch 向量化使用参考:https://cloud.tencent.com/developer/article/1774216

通过使用ES向量化查询功能完成扩量,具体实现会涉及到扩量查询采用Spark 提升并发性,通过配置扩量倍数参数来获取每一个种子用户的Top N 扩量,最终将扩量后的数据写入HDFS目录同时通知营销平台扩量完成。


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
8月前
|
搜索推荐 关系型数据库 分布式数据库
PolarDB 开源基础教程系列 7.3 应用实践之 精准营销场景
本文介绍了基于用户画像的精准营销技术,重点探讨了如何通过标签组合快速圈选目标人群。实验分为三部分: 1. **传统方法**:使用字符串存储标签并进行模糊查询,但性能较差,每次请求都需要扫描全表。 2. **实验1**:引入`pg_trgm`插件和GIN索引,显著提升了单个模糊查询条件的性能。 3. **实验2**:改用数组类型存储标签,并结合GIN索引加速包含查询,性能进一步提升。 4. **实验3**:利用`smlar`插件实现近似度过滤,支持按标签重合数量或比例筛选。
175 3
|
6月前
|
搜索推荐 数据挖掘 数据安全/隐私保护
频率派与贝叶斯统计在营销组合建模中的应用比较:隐私优先时代的方法选择
营销组合建模(MMM)是量化营销渠道贡献的核心工具,在数字营销进入隐私优先时代后焕发新生。文章探讨了频率派与贝叶斯统计学在MMM中的应用,前者实现简单、结果直观,适合数据充足场景;后者能整合先验知识、量化不确定性,适应复杂和数据稀缺情况。两者各有优劣,选择需结合业务需求与数据条件。贝叶斯方法在隐私保护趋势下尤为重要,为未来营销分析提供新思路。
202 47
频率派与贝叶斯统计在营销组合建模中的应用比较:隐私优先时代的方法选择
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
373 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
机器学习/深度学习 人工智能 搜索推荐
【图像生成技术】人工智能在广告营销的革新:图像生成技术的应用与实践代码示例
随着人工智能技术的飞速发展,广告营销行业迎来了前所未有的变革。图像生成技术,作为AI领域的一颗璀璨明星,正被广泛应用于创造个性化、高吸引力的产品展示图、海报乃至宣传视频,以精准对接目标受众,显著提升广告的转化率和整体营销效果。本文将深入探讨这一技术的应用场景,并通过一个简单的代码示例,展示如何利用深度学习框架TensorFlow来实现创意图像的自动生成。
347 4
|
人工智能 自然语言处理 监控
科技云报道:产业为根大模型应用为擎,容联云推动企业营销服场景重塑
小切口大纵深,容联云以大模型驱动企业营销场景重构
292 0
科技云报道:产业为根大模型应用为擎,容联云推动企业营销服场景重塑
|
机器学习/深度学习 人工智能 搜索推荐
人工智能在营销中的应用非常广泛
【5月更文挑战第15天】人工智能在营销中的应用非常广泛
254 3
|
小程序 安全 数据挖掘
探索隐私计算与精准营销的应用创新——产品面对面系列直播第三期
探索隐私计算与精准营销的应用创新——产品面对面系列直播第三期
373 11
|
人工智能 自然语言处理 搜索推荐
营销大模型应用落地,AI广告投手「归一妙计」重新定义营销可能性
归一智能基于「利欧归一」营销领域大模型,训练出了适配各媒体平台投放工作流的AI Agent「归一妙计」,实现8小时内完成万词万创意万落地页。
528 0
|
人工智能 安全 数据建模
G-Media 2023 | 每日互动方毅谈大模型在品牌营销领域的应用
在G-Media 2023,每日互动(个推)展示了卓越的数据营销服务能力,运用AIGC和大模型技术,通过“智选人群”功能为品牌数字营销提供了更强大的工具和解决方案。
378 2
|
关系型数据库 分布式数据库 PolarDB
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
778 0

热门文章

最新文章