基于AI分词模型,构建一个简陋的Web应用

简介: 前言内容纯属个人经验,若有不当或错误之处,还请见谅,欢迎指出。文中大致介绍了,如何快捷地使用PaddleHub服务化部署一个简单的AI模型,并简单包装成一个Web应用的过程。

前言

内容纯属个人经验,若有不当或错误之处,还请见谅,欢迎指出

文中大致介绍了,如何快捷地使用PaddleHub服务化部署一个简单的AI模型,并简单包装成一个Web应用的过程。

主要工具

  • Flask(python的Web框架)
  • PaddleHub(飞桨的预训练模型库)

1. 效果展示

0164819a22bf4cb784e2072797833f26.png

2. 应用设计

总体思路如下:


使用PaddleHub部署对分词模型lac进行服务化部署

用Flask框架构建app

app从前端获取请求,将请求转发给lac服务,将得到的响应再显示到前端

使用了jinja2模板引擎(没有做前后端全分离,一是简陋的应用没必要,二是我还不会,哈哈)

3. 实现

3.1. lac分词模型的服务化部署

1、什么是服务化部署?

“部署”这个词我见到过很多次了,但总对它的意思有些模糊。有时,将一个AI模型训练好后,保存为本地文件,然后我们就可以在python脚本中加载模型以及使用模型进行预测,这样的过程也称为“部署”。


服务化部署,就是将模型部署为一个“Web服务”。这样部署的效果就是,你只需要对相应的端口发送合适的请求,就可以得到模型的预测结果,即响应。而使用该模型不再需要各种各样的环境依赖(部署的模型本身仍然是运行在其依赖的环境中的)。


感觉说得还是有点迷糊,先就这样叭。

2、lac分词模型的部署方法


lac是PaddleHub模型仓库中的一个“预训练模型”,即已经训练好的模型,部署非常简单(在此之前你需要在python环境中安装好PaddleHub的库,具体安装方法不再赘述,可自行去github上查看相应的文档:PaddleHub),只需要两步:

  • 下载lac模型
  • 一行命令部署

运行下面两行代码时,就会自动下载lac模型(通常会下载到C盘用户目录的.paddlehub文件夹中,通常还有一个README.md文件,里面是模型的介绍以及使用教程)

import paddlehub as hub
lac = hub.Module(name="lac")

用下面的代码对模型进行测试:

import paddlehub as hub
lac = hub.Module(name="lac")
test_text = ["今天是个好天气。"]
results = lac.cut(text=test_text, use_gpu=False, batch_size=1, return_tag=True)
print(results)
#{'word': ['今天', '是', '个', '好天气', '。'], 'tag': ['TIME', 'v', 'q', 'n', 'w']}

然后命令行启动服务完成部署(不执行上面的代码,直接运行命令,也可以自动下载模型),

hub serving start -m lac

启动成功时的终端输出:

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:8866
 * Running on http://192.168.43.166:8866
INFO 2023-03-17 00:12:29,487 _internal.py:224] Press CTRL+C to quit

3.2 使用Flask构建app

1、目录结构

- templates
  - index.html
- app.py
- forms.py

:templates这个文件夹是固定的,与flask框架的render_template搭配使用,html文件都放里面,不然找不到。

2、forms.py

定义了一个表单类TextForm,之后就从网页的表单中输入待分析的文本,将数据传到后端。

from flask_wtf import FlaskForm
from wtforms import StringField
from wtforms.validators import DataRequired
class TextForm(FlaskForm):
    text = StringField('待分析的文本', validators=[DataRequired(message="不能为空")])

3、app.py

该脚本也会启动一个Web服务,直接在浏览器输入链接http://127.0.0.1:5000即可访问,其中5000app.run()中的port参数指定。

from flask import Flask, jsonify, render_template, request
import requests
from forms import TextForm
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key_here'
@app.route('/', methods=['GET', 'POST'])
def predict():
  # 实例化一个表单对象
    form = TextForm()
    if form.validate_on_submit():
        # 1. 将表单的文本数据转换为字典 --> lac服务的输入要求是字典
        data = {"text": form.text.data}
        # 2. 向paddlehub的lac服务发送请求 --> 链接是使用paddlehub部署时内部默认指定的
        response = requests.post("http://127.0.0.1:8866/predict/lac", json=data)
        result = response.json()
        results = result['results']
        return render_template('index.html', form=form, results=results)
    return render_template('index.html', form=form)
if __name__ == '__main__':
    app.run(debug=True, port=5000)  # port指定运行的端口

3、index.html

主页内容。

html文件中,使用了一些属于flask的jinja2(模板引擎,渲染html文件)的语法,即带{% %}{{ }}的内容。其中{% %}实现控制结构,{{ }}引用从render_template传过来的参数。

由于我前端了解较少,下面的页面显示起来是比较简陋的,但核心功能已经完成(能run就行)。

<h1>体验分词功能</h1>
<form action="" method="post" class="mt-4">
    <!-- csrf这一句好像可以删掉 -->
    {{ form.csrf_token }}
    {{ form.text(class='input', style='width:500px', placeholder='请输入待分析的文本') }}
    <input type="submit" value="Submit">
</form>
{% if results %}
    <p>分词结果如下:</p>
{% endif %}
<p>
{% for word in results %}
    {{ word }} 
{% endfor %}
</p>

4. 小结

  • 本次实现了一个简陋的网页应用,应用的核心功能——分词,是由另一个独立运行的服务lac提供的。将AI模型独立部署有一个好处,即它可以同时为多个网页应用提供服务。
  • 也是我自己是对之前学习的Flask知识的一次小的实践尝试。


相关文章
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
19 1
|
4天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
24 10
|
3天前
|
SQL 安全 前端开发
PHP与现代Web开发:构建高效的网络应用
【10月更文挑战第37天】在数字化时代,PHP作为一门强大的服务器端脚本语言,持续影响着Web开发的面貌。本文将深入探讨PHP在现代Web开发中的角色,包括其核心优势、面临的挑战以及如何利用PHP构建高效、安全的网络应用。通过具体代码示例和最佳实践的分享,旨在为开发者提供实用指南,帮助他们在不断变化的技术环境中保持竞争力。
|
4天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
3天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
5天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
|
5天前
|
PHP 开发者
深入浅出PHP:构建你的第一个Web应用
【10月更文挑战第35天】在数字时代的浪潮中,掌握编程技能已成为通往未来的钥匙。本文将带你从零开始,一步步走进PHP的世界,解锁创建动态网页的魔法。通过浅显易懂的语言和实际代码示例,我们将共同打造一个简单但功能强大的Web应用。无论你是编程新手还是希望扩展技能的老手,这篇文章都将是你的理想选择。让我们一起探索PHP的魅力,开启你的编程之旅!
|
6天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
7天前
|
机器学习/深度学习 人工智能 算法
AI在医疗影像诊断中的应用与未来展望####
本文深入探讨了人工智能(AI)在医疗影像诊断领域的最新进展、当前应用实例及面临的挑战,并展望了其未来的发展趋势。随着深度学习技术的不断成熟,AI正逐步成为辅助医生进行疾病早期筛查、诊断和治疗规划的重要工具。本文旨在为读者提供一个全面的视角,了解AI如何在提高医疗效率、降低成本和改善患者预后方面发挥关键作用。 ####