基于AI分词模型,构建一个简陋的Web应用

简介: 前言内容纯属个人经验,若有不当或错误之处,还请见谅,欢迎指出。文中大致介绍了,如何快捷地使用PaddleHub服务化部署一个简单的AI模型,并简单包装成一个Web应用的过程。

前言

内容纯属个人经验,若有不当或错误之处,还请见谅,欢迎指出

文中大致介绍了,如何快捷地使用PaddleHub服务化部署一个简单的AI模型,并简单包装成一个Web应用的过程。

主要工具

  • Flask(python的Web框架)
  • PaddleHub(飞桨的预训练模型库)

1. 效果展示

0164819a22bf4cb784e2072797833f26.png

2. 应用设计

总体思路如下:


使用PaddleHub部署对分词模型lac进行服务化部署

用Flask框架构建app

app从前端获取请求,将请求转发给lac服务,将得到的响应再显示到前端

使用了jinja2模板引擎(没有做前后端全分离,一是简陋的应用没必要,二是我还不会,哈哈)

3. 实现

3.1. lac分词模型的服务化部署

1、什么是服务化部署?

“部署”这个词我见到过很多次了,但总对它的意思有些模糊。有时,将一个AI模型训练好后,保存为本地文件,然后我们就可以在python脚本中加载模型以及使用模型进行预测,这样的过程也称为“部署”。


服务化部署,就是将模型部署为一个“Web服务”。这样部署的效果就是,你只需要对相应的端口发送合适的请求,就可以得到模型的预测结果,即响应。而使用该模型不再需要各种各样的环境依赖(部署的模型本身仍然是运行在其依赖的环境中的)。


感觉说得还是有点迷糊,先就这样叭。

2、lac分词模型的部署方法


lac是PaddleHub模型仓库中的一个“预训练模型”,即已经训练好的模型,部署非常简单(在此之前你需要在python环境中安装好PaddleHub的库,具体安装方法不再赘述,可自行去github上查看相应的文档:PaddleHub),只需要两步:

  • 下载lac模型
  • 一行命令部署

运行下面两行代码时,就会自动下载lac模型(通常会下载到C盘用户目录的.paddlehub文件夹中,通常还有一个README.md文件,里面是模型的介绍以及使用教程)

import paddlehub as hub
lac = hub.Module(name="lac")

用下面的代码对模型进行测试:

import paddlehub as hub
lac = hub.Module(name="lac")
test_text = ["今天是个好天气。"]
results = lac.cut(text=test_text, use_gpu=False, batch_size=1, return_tag=True)
print(results)
#{'word': ['今天', '是', '个', '好天气', '。'], 'tag': ['TIME', 'v', 'q', 'n', 'w']}

然后命令行启动服务完成部署(不执行上面的代码,直接运行命令,也可以自动下载模型),

hub serving start -m lac

启动成功时的终端输出:

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:8866
 * Running on http://192.168.43.166:8866
INFO 2023-03-17 00:12:29,487 _internal.py:224] Press CTRL+C to quit

3.2 使用Flask构建app

1、目录结构

- templates
  - index.html
- app.py
- forms.py

:templates这个文件夹是固定的,与flask框架的render_template搭配使用,html文件都放里面,不然找不到。

2、forms.py

定义了一个表单类TextForm,之后就从网页的表单中输入待分析的文本,将数据传到后端。

from flask_wtf import FlaskForm
from wtforms import StringField
from wtforms.validators import DataRequired
class TextForm(FlaskForm):
    text = StringField('待分析的文本', validators=[DataRequired(message="不能为空")])

3、app.py

该脚本也会启动一个Web服务,直接在浏览器输入链接http://127.0.0.1:5000即可访问,其中5000app.run()中的port参数指定。

from flask import Flask, jsonify, render_template, request
import requests
from forms import TextForm
app = Flask(__name__)
app.config['SECRET_KEY'] = 'your_secret_key_here'
@app.route('/', methods=['GET', 'POST'])
def predict():
  # 实例化一个表单对象
    form = TextForm()
    if form.validate_on_submit():
        # 1. 将表单的文本数据转换为字典 --> lac服务的输入要求是字典
        data = {"text": form.text.data}
        # 2. 向paddlehub的lac服务发送请求 --> 链接是使用paddlehub部署时内部默认指定的
        response = requests.post("http://127.0.0.1:8866/predict/lac", json=data)
        result = response.json()
        results = result['results']
        return render_template('index.html', form=form, results=results)
    return render_template('index.html', form=form)
if __name__ == '__main__':
    app.run(debug=True, port=5000)  # port指定运行的端口

3、index.html

主页内容。

html文件中,使用了一些属于flask的jinja2(模板引擎,渲染html文件)的语法,即带{% %}{{ }}的内容。其中{% %}实现控制结构,{{ }}引用从render_template传过来的参数。

由于我前端了解较少,下面的页面显示起来是比较简陋的,但核心功能已经完成(能run就行)。

<h1>体验分词功能</h1>
<form action="" method="post" class="mt-4">
    <!-- csrf这一句好像可以删掉 -->
    {{ form.csrf_token }}
    {{ form.text(class='input', style='width:500px', placeholder='请输入待分析的文本') }}
    <input type="submit" value="Submit">
</form>
{% if results %}
    <p>分词结果如下:</p>
{% endif %}
<p>
{% for word in results %}
    {{ word }} 
{% endfor %}
</p>

4. 小结

  • 本次实现了一个简陋的网页应用,应用的核心功能——分词,是由另一个独立运行的服务lac提供的。将AI模型独立部署有一个好处,即它可以同时为多个网页应用提供服务。
  • 也是我自己是对之前学习的Flask知识的一次小的实践尝试。


相关文章
|
9天前
|
Kubernetes 安全 Devops
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
34 10
有效抵御网络应用及API威胁,聊聊F5 BIG-IP Next Web应用防火墙
|
9天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
56 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
11天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
52 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
11天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
52 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
15天前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
107 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
12天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
31 5
【AI系统】模型转换流程
|
12天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
33 4
【AI系统】模型转换基本介绍
|
12天前
|
机器学习/深度学习 人工智能 算法
【AI系统】模型压缩基本介绍
模型压缩旨在通过减少存储空间、降低计算量和提高计算效率,降低模型部署成本,同时保持模型性能。主要技术包括模型量化、参数剪枝、知识蒸馏和低秩分解,广泛应用于移动设备、物联网、在线服务系统、大模型及自动驾驶等领域。
49 4
【AI系统】模型压缩基本介绍
|
12天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型剪枝
本文概述了模型剪枝的概念、方法及流程,旨在通过移除神经网络中冗余或不重要的参数,实现模型规模的减小和效率的提升。剪枝不仅有助于降低模型的存储和计算需求,还能增强模型的泛化能力。文章详细介绍了剪枝的定义、分类、不同阶段的剪枝流程,以及多种剪枝算法,如基于参数重要性的方法、结构化剪枝、动态剪枝和基于优化算法的全局剪枝策略。通过这些方法,可以在保持模型性能的同时,显著提高模型的计算速度和部署灵活性。
27 2
【AI系统】模型剪枝
|
1天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学

热门文章

最新文章