在E-MapReduce集群内运行Spark GraphX作业

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Spark GraphX是一个比较流行的图计算框架,如果你使用了阿里云的E-MapReduce服务,可以很方便的运行图计算的作业。 下面以PageRank为例,看看如何运行GraphX作业

Spark GraphX是一个比较流行的图计算框架,如果你使用了阿里云的E-MapReduce服务,可以很方便的运行图计算的作业。

下面以PageRank为例,看看如何运行GraphX作业。这个例子来自Spark官方的example(examples/src/main/scala/org/apache/spark/examples/graphx/PageRankExample.scala),直接调用GraphOps的pageRank方法,计算出ranks:

object PageRankExample {
  def main(args: Array[String]): Unit = {
    // Creates a SparkSession.
    val spark = SparkSession
      .builder
      .appName(s"${this.getClass.getSimpleName}")
      .getOrCreate()
    val sc = spark.sparkContext

    // $example on$
    // Load the edges as a graph
    val graph = GraphLoader.edgeListFile(sc, "data/graphx/followers.txt")
    // Run PageRank
    val ranks = graph.pageRank(0.0001).vertices
    // Join the ranks with the usernames
    val users = sc.textFile("data/graphx/users.txt").map { line =>
      val fields = line.split(",")
      (fields(0).toLong, fields(1))
    }
    val ranksByUsername = users.join(ranks).map {
      case (id, (username, rank)) => (username, rank)
    }
    // Print the result
    println(ranksByUsername.collect().mkString("\n"))
    // $example off$
    spark.stop()
  }
}

下面来看如何运行这个example,首先要登录E-MapReduce程序的Master节点,依次运行如下命令:

  • cd /usr/lib/spark-current
  • hadoop fs -mkdir -p data
  • hadoop fs -put data/graphx data/​
  • ​​run-example graphx.PageRankExample

等待作业 提交之后,最后运行结果打印:

(justinbieber,0.15)
(matei_zaharia,0.7013599933629602)
(ladygaga,1.390049198216498)
(BarackObama,1.4588814096664682)
(jeresig,0.9993442038507723)
(odersky,1.2973176314422592)
目录
相关文章
|
9月前
|
存储 分布式计算 调度
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
|
12月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
203 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
12月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
287 0
|
12月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
139 0
|
12月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
190 0
|
分布式计算 大数据 调度
Spark 集群搭建_高可用配置|学习笔记
快速学习 Spark 集群搭建_高可用配置
Spark 集群搭建_高可用配置|学习笔记
|
分布式计算 Hadoop Linux
Spark集群搭建记录 | 云计算[CentOS7] | Spark配置
写在前面 step1 Spark下载 step2 修改环境变量 ~/.bashrc /etc/profile step3 配置Master-文件修改 slaves spark-env.sh step4 配置slave节点 step5 集群启动 step6 web浏览器状态查看 step7 配置开机启动(可选)
348 0
Spark集群搭建记录 | 云计算[CentOS7] | Spark配置
|
分布式计算 Hadoop Java
|
分布式计算 Spark Hadoop
|
4月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
209 0