B - MaratonIME challenges USPGameDev

简介: B - MaratonIME challenges USPGameDev

Statements

Year after year, MaratonIME (group that authored this contest) and USPGameDev (game developing group at USP) fight epic clashes that last for centuries over which group will get each freshman to join them. This year, Russo (from MaratonIME) challenged Wil (from USPGameDev) to a dangerous match of darts.

Each one of them has already thrown their darts at the bullseye, but they can't decide which one of them got closest to hitting the center of it. Each one of them claims to have won the match. You, as a fair freshman, decided to judge the clash yourself.

Two points on the 2d plane are given, r, the point where Russo's dart hit, and w, the point where Wil's dart hit. If r is closest to the origin (0, 0) than w, Russo won and you should print out "Russo" (no quotes) and join MaratonIME. If w and r are equally close to the origin, there's a draw, you should print "Empate" (no quotes), which stands for "Draw" in portuguese, and join MaratonIME, because that was the agreed draw outcome. If w is closest to the origin than r, you should print "Wil" (no quotes) and join MaratonIME anyway, because it is the coolest group.

Input

On the first line of the input, a pair of integers xr and yr is given, the coordinates hit by Russo. On the second line another pair of integers xw and yw is given, the coordinates hit by Wil. Every coordinate is guaranteed not to exceed 10000 on absolute value, formally,  - 10000 ≤ xr, yr, xw, yw ≤ 10000.

Output

A single line containing "Russo", "Wil" or "Empate", acording to statement's instructions.

Examples

Input

2 1

3 0


Output

Russo


Input

10000 0

10000 1


Output

Russo

题目大意及思路:给你圆心和半径,让你求到(0.0)的距离,通过比较距离,来输出最后的结果。

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    int x1, y1, x2, y2;
    int sum1, sum2;
    scanf("%d %d", &x1, &y1);
    scanf("%d %d", &x2, &y2);
    sum1 = x1 * x1 + y1 * y1;
    sum2 = x2 * x2 + y2 * y2;
    if(sum1 < sum2)
    {
        printf("Russo\n");
    }
    else if(sum1 == sum2)
    {
        printf("Empate\n");
    }
    else
    {
        printf("Wil\n");
    }
    return 0;
}


相关文章
|
算法 决策智能
【读书笔记】Algorithms for Decision Making(14)
本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。
372 0
【读书笔记】Algorithms for Decision Making(14)
|
机器学习/深度学习 算法 流计算
【读书笔记】Algorithms for Decision Making(6)
对于较大状态空间的问题,计算精确解需要极大的内存量,因而考虑近似解的方法。常使用approximate dynamic programming的方法去寻求近似解,进而使用在线方法实现实时计算。
167 0
【读书笔记】Algorithms for Decision Making(6)
|
机器学习/深度学习 API
【读书笔记】Algorithms for Decision Making(8)
解决存在模型不确定性的此类问题是强化学习领域的主题,这是这部分的重点。解决模型不确定性的几个挑战:首先,智能体必须仔细平衡环境探索和利用通过经验获得的知识。第二,在做出重要决策后很长时间内,可能会收到奖励,因此必须将以后奖励的学分分配给以前的决策。第三,智能体必须从有限的经验中进行概括。
216 0
【读书笔记】Algorithms for Decision Making(8)
|
机器学习/深度学习 算法 vr&ar
【读书笔记】Algorithms for Decision Making(9)
与基于模型的方法相比,无模型方法不需要构建转移函数和奖励函数的显性表示,而是直接作用于值函数建模。进一步地,考虑模拟学习来重建奖励函数。
【读书笔记】Algorithms for Decision Making(9)
|
算法 关系型数据库 数据建模
【读书笔记】Algorithms for Decision Making(4)
本部分讨论从数据学习或拟合模型参数的问题,进一步讨论了从数据中学习模型结构的方法,最后对决策理论进行了简单的概述。
103 0
【读书笔记】Algorithms for Decision Making(4)
|
机器学习/深度学习 人工智能 算法
【读书笔记】Algorithms for Decision Making(1)
我自己的粗浅看法:机器学习要不是拟合逼近(经常提及的machine learning),要不就是决策过程(reinforcement learning),这本书主要讲述后者的前世今生。
333 0
【读书笔记】Algorithms for Decision Making(1)
|
决策智能
【读书笔记】Algorithms for Decision Making(13)
本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。
148 0
|
算法
【读书笔记】Algorithms for Decision Making(3)
上一部分给出了概率分布的表示论。本部分将展示如何使用概率表示进行推理,即确定一组给定观察变量相关值的一个或多个未观察变量的分布。在该部分中首先介绍直接推断的办法,然后给出几种有效的近似方法。
157 0
|
算法 机器人
【读书笔记】Algorithms for Decision Making(10)
在这一部分将不确定性扩展到状态。具体讲,接收到的观测值与状态只有概率关系,而不是精确地观察状态。此类问题可以建模为部分可观察的马尔可夫决策过程(POMDP),但POMDP很难以最佳方式解决所有问题,因而需要引入更多的近似策略。
169 0

热门文章

最新文章