基于深度学习网络的美食检测系统matlab仿真

简介: 基于深度学习网络的美食检测系统matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
美食检测是一项利用计算机视觉技术来识别和分类食物图像的任务。

   特征提取是食品检测的核心步骤,其目的是从输入图像中提取出有效的特征,以便于后续的分类。常见的特征提取方法包括手工提取特征和深度学习网络提取特征。

   手工提取特征:通过人工选择一些与食品相关的特征,如颜色、纹理、形状等,然后使用传统的计算机视觉技术(如SIFT、HOG等)提取这些特征。

   深度学习网络提取特征:使用深度学习网络对输入图像进行自动的特征提取。常见的深度学习网络包括卷积神经网络(CNN)和循环神经网络(RNN)等。

   CNN提取特征:CNN是一种基于卷积层的深度学习网络,其特点是能够自动从输入图像中学习到有效的特征。CNN主要由卷积层、池化层和全连接层组成。卷积层可以提取输入图像中的局部特征,池化层可以降低特征的维度,全连接层可以将局部特征组合成全局特征。CNN的常用结构包括VGG、ResNet和Inception等。

   RNN提取特征:RNN是一种基于递归神经网络的深度学习网络,其特点是能够处理序列数据(如文本、语音和视频等)。在食品检测中,RNN可以用于对食品序列进行分析和处理。常见的RNN结构包括LSTM和GRU等。

   YoloV2是一种基于深度学习的目标检测算法,由Joseph Redmon等人在2016年提出。相比于其他目标检测算法,YoloV2具有较高的检测速度和准确性,同时能够同时检测多个目标,因此在美食检测等应用场景中具有较好的表现。

   YoloV2的主要原理是通过对输入图像进行网格划分,将每个网格视为一个单元格,然后在每个单元格中预测多个目标框及其所属类别。相比于其他目标检测算法,YoloV2的独特之处在于其将目标检测任务转化为一个单次前向传递的回归问题,即将目标框的位置和类别预测问题转化为一个端到端的回归问题。

   具体来说,YoloV2采用CNN作为骨干网络,通过对CNN的最后一层进行修改,将输出特征图的大小调整为指定的大小,使得每个特征点对应于输入图像上的一个像素点。然后,对于每个特征点,YoloV2通过一个轻量级的全连接层来预测目标框的位置和类别概率。同时,为了解决不同尺寸的目标框对预测结果的影响,YoloV2采用多尺度预测的方法,即在多个不同尺寸的特征图上进行预测。

4.部分核心程序

```% 图像大小
image_size = [224 224 3];
num_classes = size(VD,2)-1;% 目标类别数量
anchor_boxes = [% 预定义的锚框大小
43 59
18 22
23 29
84 109
];
% 加载预训练的 ResNet-50 模型
load Model_resnet50.mat

% 用于目标检测的特征层
featureLayer = 'activation_40_relu';
% 构建 YOLOv2 网络
lgraph = yolov2Layers(image_size,num_classes,anchor_boxes,Initial_nn,featureLayer);

options = trainingOptions('sgdm', ...
'MiniBatchSize', 8, ....
'InitialLearnRate',1e-3, ...
'MaxEpochs',100,...
'CheckpointPath', checkpoint_folder, ...
'Shuffle','every-epoch', ...
'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);

```

相关文章
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
1天前
|
机器学习/深度学习 运维 监控
利用深度学习进行系统健康监控:智能运维的新纪元
利用深度学习进行系统健康监控:智能运维的新纪元
51 30
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
56 31
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
10天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度