python数据可视化入门

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 数据可视化在数据分析和数据科学中起着重要的作用。它可以帮助我们更直观地理解和解释数据,发现数据中的模式、趋势和异常。

在数据可视化中,常用的图表类型包括折线图、散点图、直方图和饼图,每种图表类型都适用于不同类型的数据和目的。

折线图:用于显示随时间或其他连续变量而变化的数据,可以展示趋势和变化情况。

散点图:用于显示两个变量之间的关系,每个数据点代表一个观测值,可以帮助发现变量之间的相关性或集群。

直方图:用于显示数据的分布情况,将数据分成若干个区间,并统计每个区间内的观测数量或频率。

饼图:用于显示分类数据的占比情况,将数据按照类别划分,并展示每个类别的相对比例。

除了以上常用的图表类型,还有其他更复杂的图表类型和可视化技术,如箱线图、热力图、地图等,可以根据具体的数据和分析目的选择合适的图表类型。

在Python中,使用Matplotlib、Seaborn、Plotly等库可以轻松地进行数据可视化。这些库提供了丰富的函数和方法,可以进行数据处理、图表绘制、样式设置等操作,帮助我们快速生成高质量的图表。

通过数据可视化,我们可以更好地理解数据,发现数据中的规律和趋势,从而支持决策制定、问题解决和进一步的数据分析工作。

这里我就先介绍最基础的四个数据图的创建方法,按折线图、散点图、直方图和饼图的先后顺序,我直接把讲解以注释的形式打在代码旁边就不多写旁白了
折线图

import matplotlib.pyplot as plt
’‘’每次绘图基本上都会用到matplotlib这个模块,import 表示引用,as 的意思就是因为每次都写这个字母太长了,直接用一个plt代替‘’‘
squares=[1,4,9,16,25]#我们的y轴
x=[1,2,3,4,5]#我们的x轴
plt.style.use('seaborn')#这里其实可有可无,这个用来选择
plt.plot(x,squares,linewidth=5)#这个就是创建图像,括号里面的是先x轴,y轴还有我创建的线的大小
plt.title('square nunber',fontsize=24)#这里英文叫title中文的意思,用来设置标题的
plt.xlabel('value',fontsize=14)#设置x轴名称和字体大小
plt.ylabel('square of value',fontsize=14)#设置y轴的名称和字体大小
plt.tick_params(axis='both',labelsize=12)#设置刻度样式,指定的实参将影响x y轴的刻度(axis=both),labelsize是设置字号
plt.show()#让图像显示出来

这段代码同样使用了Matplotlib库来创建一个折线图。

代码中首先定义了两个列表x和squares,分别表示横坐标和纵坐标的数据。

接着,使用plt.style.use('seaborn')选择了一个风格为'seaborn'的样式。

然后,使用plt.plot()函数绘制折线图,传入x和squares作为数据点的横坐标和纵坐标。linewidth参数设置折线的宽度。

接下来,使用plt.title()、plt.xlabel()和plt.ylabel()函数设置图表的标题、x轴和y轴的名称,并指定字体大小。

使用plt.tick_params()函数设置刻度样式,其中axis='both'表示同时设置x轴和y轴的刻度样式,labelsize=12指定刻度标签的字号为12。

最后,使用plt.show()显示图表。

整体而言,这段代码通过Matplotlib库创建了一个折线图,展示了x和squares两个列表的数据关系。图表具有标题、轴标签和刻度样式等,使得数据更加易于理解和解读。
截屏2023-12-27 下午9.38.18.png

散点图

import matplotlib.pyplot as plt
squares=[1,4,9,16,25]
x=[1,2,3,4,5]
plt.scatter(x,squares,linewidth=5)
plt.title('square nunber',fontsize=24)
plt.xlabel('value',fontsze=14)#设置x轴名称和字体大小
plt.ylabel('square of value',fontsize=14)#设置y轴的名称和字体大小
plt.tick_params(axis='both',labelsize=12)#设置刻度样式,指定的实参将影响x y轴的刻度(axis=both),labelsize是设置字号
plt.show()

这段代码使用了Matplotlib库来创建一个散点图。

首先,定义了两个列表x和squares,分别表示横坐标和纵坐标的数据。

接着,使用plt.scatter()函数绘制散点图,传入x和squares作为数据点的横坐标和纵坐标。linewidth参数设置散点的边界宽度。

然后,使用plt.title()函数设置图表的标题为"square number",并指定字体大小为24。

接下来,使用plt.xlabel()和plt.ylabel()函数设置x轴和y轴的名称,同时指定字体大小为14。

使用plt.tick_params()函数设置刻度样式,其中axis='both'表示同时设置x轴和y轴的刻度样式,labelsize=12指定刻度标签的字号为12。

最后,使用plt.show()显示图表。

整体而言,这段代码通过python库创建了一个散点图,展示了x和squares两个列表的数据关系。图表具有标题、轴标签和刻度样式等,使得数据更加易于理解和解读。
截屏2023-12-27 下午9.43.14.png

柱状图

import numpy as np#这个也是数据分析常用的库之一,里面有很多有用的函数,比如下面就用到
import matplotlib.pyplot as plt
a=np.random.random(5)#这里我随机生成五个浮点数
x=np.arange(5)#生成01234
plt.bar(x,a,width=0.5
plt.show()

在这段代码中,我们首先引入了NumPy库,并使用np.random.random(5)生成了一个包含五个随机浮点数的数组。然后,使用np.arange(5)生成了一个包含0到4的整数数组作为条形图的x坐标。

接着,我们使用plt.bar()函数创建了一个简单的条形图,传入x坐标、高度数据a以及条形的宽度。最后使用plt.show()显示了生成的条形图。
截屏2023-12-27 下午9.43.33.png

饼图

import matplotlib.pyplot as plt
labels ='wed','网站','django','Django'
sizes =[143,125,3,28]
explode =[0.2,0,0,0]     
plt.pie(x=sizes,labels=labels,explode=explode,autopct='%3.1f %%',
shadow=True,labeldistance=1.1,startangle=90,pctdistance=0.6)![截屏2023-12-27 下午9.43.33.png](https://ucc.alicdn.com/pic/developer-ecology/pipydsmx7nkak_b2e9ca320bfa4c47bb6d0449a218b981.png)

‘’‘括号里面比较复杂,但是我们现在只需要关注几个点就可以了,第一个是sizes,他是我们的数据,label是不同的名称,explore是饼与其他饼的距离,如果是0就贴在一起,数字表示分离的距离‘’‘
plt.show()

截屏2023-12-27 下午9.44.19.png

代码中定义了四个变量:labels表示每个扇区的标签,sizes表示每个扇区的大小,explode表示每个扇区与其他扇区之间的距离,autopct表示显示百分比的格式。

使用plt.pie()函数创建了饼图,其中传入了sizes、labels、explode等参数。x=sizes表示使用sizes作为数据源,labels=labels表示使用labels作为标签,explode=explode表示扇区之间的距离,autopct='%3.1f %%'表示显示百分比,并设置了显示格式,shadow=True表示显示阴影效果,labeldistance=1.1表示标签的位置离圆心的距离,startangle=90表示起始角度为90度,pctdistance=0.6表示百分比标签的位置离圆心的距离。

最后使用plt.show()显示了生成的饼图。

相关文章
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈

推荐镜像

更多