带你读《Apache Doris 案例集》——08秒级数据写入,毫秒查询响应,天眼查基于 Apache Doris 构建统一实时数仓(1)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 带你读《Apache Doris 案例集》——08秒级数据写入,毫秒查询响应,天眼查基于 Apache Doris 构建统一实时数仓(1)

作者:天眼查实时计算负责人,王涛

 

导读: 随着天眼查近年来对产品的持续深耕和迭代,用户数量也在不断攀升,业务的突破更加依赖于数据赋能,精细化的用户/客户运营也成为提升体验、促进消费的重要动力。在这样的背景下正式引入Apache Doris对数仓架构进行升级改造,实现了数据门户的统一,大大缩短了数据处理链路,数据导入速率提升75%,500万及以下人群圈选可以实现毫秒级响应,收获了公司内部数据部门、业务方的一致好评。

 

天眼查是中国领先的商业查询平台,以公开数据为切入点、以关系为核心的产品,帮助传统企业或个人降低成本,为防范化解金融风险方面提供了产品化的解决方案。目前已收录全国3亿多家社会实体信息,300多种维度信息及时更新,致力于构建商业安全,从而实现公平看清世界

 

业务背景

 

天眼查的数据仓库主要服务于三个业务场景,每个场景都有其特点和需求,具体如下:

 

亿级用户人群圈选:人群圈选场景中目前有100+人群包,我们需要根据SQL 条件圈选人群包,来支持人群包的交并差、人群包实时圈选和人群包更新通知下游等需求。例如:圈选出 下单未支付超过5分钟的用户,我们通过用户标签可以直观掌握用户支付状态,为运营&销团队提供更精细化的人群管理服务,从而提高转化率。 

 

多元活动支撑的精准营销:该场景目前支持了1000 多个指标,可支持即席查询,根据活动效果及时调整运营策略。例如在开工季活动中,需要为数据分析&运营团队提供数据支持,从而生成可视化的活动驾驶舱。

 

高并发的 C 端分析数据:该场景承载了3亿+实体(多种维度)的数据体量,同时要求实时更新,以供用户进行数据分析。

 

原有架构及痛点 

 

为满足各业务场景提出的需求,我们开始搭建第一代数据仓库,即原有数仓:

image.png 在原有数仓架构中,  Hive 作为数据计算层,MySQLESPG    作为数据存储层,我们简单介绍一下架构的运行原理:

 

●数据源层和数据接入层: MySQL 通过 Canal BinLog 接入 Kafka埋点日志通过 Flume 接入Kafka,最后由 DataXKafka 中的数据接入数据计算层 Hive 中; 

 

●数据计算层:该层使用 Hive 中的传统的数仓模型,并利用海豚调度使数据通过 ODS->DWD->DWS      分层,最后通过 DataX  将 T+1 把数据导入到数据存储层的MySQL    和 ES 中。

 

●数据存储层:MySQL  主要为 DataBankTableau、C  端提供分析数据,ES 用于存储用户画像数据, PG 用于人群包的存储 (PG  安装的插件具有Bitmap 交并差功能),ESPG  两者均服务于DMP 人群圈选系统。

 

问题与挑战

 

依托于原有架构的投入使用,初步解决了业务方的需求,但随着天眼查近年来对产品的持续深耕和迭代,用户数量也在不断攀升,业务的突破更加依赖于数据赋能。精细化的用户/客户运营也成为提升体验、促进消费的重要动力。在这样的背景下,原有架构的缺点逐渐暴露: 

 

开发流程冗长:体现在数据处理链路上,比如当面对一个简单的开发需求,需要先拉取数据,再经过 Hive 计算,然后通过T+1 更新导入数据等,数据处理链路较长且复杂,非常影响开发效率。

 

不支持即席查询:体现在报表服务和人群圈选场景中,所用的指标无法根据条件直接查询,必须提前进行定义和开发。

 

●T+1 更新延迟高: T+1 数据时效性已经无法提供精确的线索,主要体现在报表和人群圈选场景上。

 

运维难度高:原有架构具有多条数据处理链路、多组件耦合的特点,运维和管理难度很高。

 

理想架构

 

基于以上问题,我们决定对架构进行升级改进,在正式升级之前,我们希望未来的架构可以做到以下几点:

 

原架构涉及 MySQLPGES    等多个组件,并为不同应用提供服务;我们希望未来的架构可以兼容 MySQL  协议,实现低成本替换、无缝衔接以上组件。

 

支持即席查询且性能优异,即席查询能够给业务方提供更灵活的表达方式,业务方可以从多个角度、多个维度对数据进行查询和分析,更好地发现数据的规律和趋势,帮助业务方更精准备地做出决策。 

 

支持实时聚合,以减轻开发负担并保证计算结果的准确性。

 

统一数据出口,原架构中数据出口不唯一,我们希望未来的架构能更统一数据出口,缩短链路维护成本,提升数据的可复用性。

 

支持高并发,  C 端的实时分析数据需要较高的并发能力,我们希望未来的架构可以高并发性能优异。

 

技术选型 

 

考虑到和需求的匹配度,我们重点对 OLAP 引擎进行了调研,并快速定位到ClickHouse Apache Doris 这两款产品,在深入调研中发现Doris在以下几个方面优势明显,更符合我们的诉求:

 

●标准 SQL:ClickHouse  对标准 SQL支持有限,使用中需要对多表Join语法进行改写;而Doris兼容MySQL 协议,支持标准SQL,   可以直接运行,同时 DorisJoin性能远优于ClickHouse.

 

降本增效:Doris  部署简单,只有 FE BE 两个组件,不依赖其他系统;生态内导数功能较为完备,可根据数据源/数据格式选择导入方式;还可以直接使用命令行操作弹性伸缩,无需额外投入人力;运维简单,问题排查难度低。相比之下,ClickHouse   需要投入较多的开发人力来实现类似的功能,使用难度高;同时ClickHouse 运维难度很高,需要研发一个运维系统来支持处理大部分的日常运维工作。

 

 并发能力: ClickHouse 的并发能力较弱是一个潜在风险,而Doris 发能力更占优势,并且刚刚发布的2.0 版本支持了更高并发的点查。 

 

导入事务: ClickHouse   的数据导入没有事务支持,无法实现 Exactly   Once 语义,如导数失败需要删除重导,流程比较复杂;而 Doris 导入数据支持事务,可以保证一批次内的数据原子生效,不会出现部分数据写入的情况,降低了判断的成本。

 

丰富的使用场景: ClickHouse 支持场景单一,Doris 支持场景更加丰富,用户基于Doris 以构建用户行为分析、AB 实验平台、日志检索分析、用户画像分析、订单分析等应用。

 

丰富的数据模型:Doris 提供了UniqueDuplicateAggregate  三种数据模型,可以针对不同场景灵活应用不同的数据模型。

 

●社区响应速度快: Doris 社区的响应速度是其独有特色, SelectDB 为社区组建了一直完备的社区支持团队,社区的快速响应让我们少走了很多歪路,帮助我们解决了许多问题。


更多精彩内容,欢迎观看:

带你读《Apache Doris 案例集》——08秒级数据写入,毫秒查询响应  天眼查基于 Apache   Doris 构建统一实时数仓(2):https://developer.aliyun.com/article/1405689

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
相关文章
|
3月前
|
存储 SQL 缓存
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
快手 OLAP 系统为内外多个场景提供数据服务,每天承载近 10 亿的查询请求。原有湖仓分离架构,由离线数据湖和实时数仓组成,面临存储冗余、资源抢占、治理复杂、查询调优难等问题。通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
|
1月前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
2月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
37 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
2月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
54 3
|
2月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
2月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
50 1
|
2月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
78 1
|
2月前
|
SQL 大数据 Apache
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(二)
88 1
|
2月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
42 2
|
2月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
62 1

推荐镜像

更多