基于二维小波变换的散斑相位奇异构造算法matlab仿真

简介: 基于二维小波变换的散斑相位奇异构造算法matlab仿真

1.算法运行效果图预览

df105f4f4de1b748c558586d9931967e_82780907_202312262214130007523438_Expires=1703600653&Signature=80KfdgBGIjTtCrDDCSnz2btcTS8%3D&domain=8.jpeg

   图(1)表示散斑原图像,(2)表示对(1)图像进行x轴方向的极化分析的小波相位图,呈周期的水平条纹,(3)表示对(1)图像进行y轴方向的极化分析的小波相位图,呈周期的竖直条纹。

c58055c5c0e0339aaa76a04cbeb0ad7b_82780907_202312262214230021716349_Expires=1703600663&Signature=vPrbnmsdL4%2BNgaiKjpbjJocFuHA%3D&domain=8.jpeg

    表示相位奇异点图的构造过程,其中(1)表示从上图(2)中提取的实部零值线,(2)表示从上图(3)中提取的虚部零值线,(3)表示(1)和(2)两幅图重合后的图像。

2.算法运行软件版本
matlab2022a

3.算法理论概述
面内微位移测量是力学测量中的重要分支,可应用到工程在线检测、精密设备加工、细胞生物测定等各种不同的领域,面内微位移测量技术水平的高低直接影响着各个领域技术水平的发展。散斑是光学中的一种普遍现象,采用散斑图像进行面内微位移测量具有设备简单、非接触等优点,在面内微位移测量中发挥着重要的作用。散斑图像是由于光的干涉和衍射效应在物体表面形成的随机颗粒状纹理。这些散斑图像通常包含大量的噪声和畸变,对于许多图像处理任务来说是一个挑战。基于二维小波变换的散斑相位奇异构造算法利用小波变换的优良特性,对散斑图像进行多尺度分解,从而提取出图像中的相位奇异信息。

   二维小波变换是一种有效的图像分析工具,它能够将图像分解为不同的频带,从而在不同的尺度上分析图像的特征。通过小波变换,可以将散斑图像分解为一系列具有不同空间尺度和方向性的子带,这些子带反映了图像在不同尺度上的特征。

   采用二维方向小波变换构造新型的、网格均匀的网状相位奇异点图,提出了初步位移和精确位移两步测量的新方法,由初步位移和匹配最邻近奇异点对间的位移计算待测物体的精确位移。基于二维小波变换的散斑相位奇异构造算法的实现过程如下:

对输入的散斑图像进行二维小波变换,得到不同尺度和方向上的小波系数。
分析小波系数,提取出相位奇异信息。这可以通过计算相位梯度、相位跃变等方法来实现。
根据提取出的相位奇异信息,构造出散斑图像的相位奇异图。这个图反映了图像中重要特征的位置和形状。
对构造出的相位奇异图进行后处理,例如滤波、增强等,以提高图像的质量和可视化效果。

4.部分核心程序
```movex = 14;
movey = 4;
es = 6;
k0 = 4;
a = 20;

I0 = imresize(double(rgb2gray(imread('1.jpg'))),[130,130]);
[R,C] = size(I0);

if movex == 0;
I0 = I0;
else
I0 = [I0(:,movex+1:end),I0(:,1:movex)];
I0 = [I0(movey+1:end,:);I0(1:movey,:)];
end

figure;
subplot(131);
imshow(I0,[]);
title('散斑原图像');
axis square;

%x轴方向的极化分析的小波变换相位图计算
Fx = func_fai_base(I0,movex,movey,es,k0,a,'x');
subplot(132);
imshow(Fx,[]);
title('x轴极化分析的小波变换相位图');
axis square;
%y轴方向的极化分析的小波变换相位图计算
Fy = func_fai_base(I0,movex,movey,es,k0,a,'y');
subplot(133);
imshow(Fy,[]);
title('y轴极化分析的小波变换相位图');
axis square;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F2x = func_findzeros(Fx,'x');
figure;
subplot(131);
imshow(F2x,[]);
title('实部零值线');
F2y = func_findzeros(Fy,'y');
subplot(132);
imshow(F2y,[]);
title('虚部零值线');
%重叠
Fxy = func_chongdie(F2x,F2y);
subplot(133);
imshow(Fxy,[]);
title('重合,交点即相位奇异点');

```

相关文章
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
7天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
29天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
2月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
15天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
22天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。

热门文章

最新文章