垂直分表
用户在浏览商品列表时,只有对某商品感兴趣时才会查看该商品的详细描述。因此,商品信息中商品描述字段访问频次较低,且该字段存储占用空间较大,访问单个数据IO时间较长;商品信息中商品名称、商品图片、商品价格等其他字段数据访问频次较高
由于这两种数据的特性不一样,因此考虑将商品信息表拆分
定义:
将一个表按照字段分成多表,每个表存储其中一部分字段
它带来的提升:
- 为了避免 IO 争抢并减少锁表的几率,查看详情的用户与商品信息浏览互不影响
- 充分发挥热门数据的操作效率,商品信息的操作的高效率不会被商品描述的低效率所拖累
执行原则:
- 把不常用的字段单独放在一张表
- 把
text
,blob
等大字段拆分出来放在附表中 - 经常组合查询的列放在一张表中
垂直分库
通过垂直分表性能得到了一定程度的提升,但是还没有达到要求,并且磁盘空间也快不够了,因为数据还是始终限制在一台服务器,库内垂直分表只解决了单一表数据量过大的问题,但没有将表分布到不同的服务器上,因此每个表还是竞争同一个物理机的CPU、内存、网络IO、磁盘。
概念:
按照业务将表进行分类,分布到不同的数据库上面,每个库可以放在不同的服务器上,它的核心理念是专库专用
它带来的提升:
- 解决业务层面的耦合,业务清晰
- 能对不同业务的数据进行分级管理、维护、监控、扩展等
- 高并发场景下,垂直分库一定程度的提升IO、数据库连接数、降低单机硬件资源的瓶颈
弊端:
垂直分库通过将表按业务分类,然后分布在不同数据库,并且可以将这些数据库部署在不同服务器上,从而达到多个服务器共同分摊压力的效果,但是依然没有解决单表数据量过大的问题。