Anaconda环境配置Python绘图库Matplotlib的方法

简介: Anaconda环境配置Python绘图库Matplotlib的方法

  本文介绍在Anaconda环境中,安装Python语言matplotlib模块的方法。

  在之前的文章中,我们多次介绍了Python语言matplotlib库的使用;而这篇文章,就介绍一下在Anaconda环境下,配置matplotlib库的方法。

  首先,打开Anaconda Prompt软件,如下图所示。

  在这里,由于我是希望在一个名称为py36tfPython虚拟环境中配置matplotlib库,因此首先通过如下的代码进入这一环境;关于虚拟环境的创建与进入,大家可以参考文章Anaconda中Python虚拟环境的创建、使用与删除https://blog.csdn.net/zhebushibiaoshifu/article/details/128334614)。

activate py36tf

  运行上述代码,即可进入指定的虚拟环境中,如下图所示。

  接下来,我们即可开始matplotlib库的配置;通过输入如下的代码,将开始matplotlib库的配置工作。

conda install -c conda-forge matplotlib

  运行上述代码,稍等片刻即可出现如下图所示的字样。

  接下来,输入y即可开始matplotlib库的配置工作。再稍等片刻,出现如下图所示的情况,即说明matplotlib库已经配置完毕。

  此时,我们可以通过如下图所示的代码,检查是否成功完成matplotlib库的配置工作。

  如果没有报错, 说明matplotlib库已经成功配置。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
4月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
523 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
Python
Matplotlib imsave() 方法
Matplotlib imsave() 方法
46 7
|
2月前
|
存储 Python
Matplotlib imread() 方法
Matplotlib imread() 方法
53 6
|
2月前
|
定位技术 Python
Matplotlib imshow() 方法
Matplotlib imshow() 方法
74 10
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
4月前
|
机器学习/深度学习 Python
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
本篇将详细介绍如何在Mac系统上安装和配置Anaconda,如何创建虚拟环境,并学习如何使用 `pip` 和 `conda` 管理Python包,直到成功运行第一个Python程序。通过本篇,您将学会如何高效地使用Anaconda创建和管理虚拟环境,并使用Python开发。
156 4
【10月更文挑战第5天】「Mac上学Python 6」入门篇6 - 安装与使用Anaconda
|
3月前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
116 5
|
3月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
155 5
|
4月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
31 1

热门文章

最新文章

推荐镜像

更多