ArcGIS中ArcMap栅格重采样操作与算法选择

简介: ArcGIS中ArcMap栅格重采样操作与算法选择

  本文介绍在ArcMap软件中,实现栅格图像重采样的具体操作,以及不同重采样方法的选择依据。

  在文章Python中ArcPy实现栅格图像文件批量掩膜与批量重采样https://blog.csdn.net/zhebushibiaoshifu/article/details/124282764)中,我们介绍了基于PythonArcpy模块对栅格图像加以批量重采样的方法;而在ArcMap软件中,我们可以实现不需要代码的栅格重采样操作;本文就对这一操作方法加以具体介绍。

  首先,如下图所示,是我们待重采样的栅格图像的属性界面。其中,可以看到此时栅格像元的边长为0.4867左右(由于图层是地理坐标系,所以单位就是)。

  接下来,我们即可开始重采样操作。首先,在ArcMap软件中,依次选择“System Toolboxes”→“Data Management Tools.tbx”→“Raster”→“Raster Processing”→“Resample”选项;如下图所示。

  随后,即可弹出“Resample”窗口。在窗口的第一个选项中,输入我们待重采样的栅格文件;在第二个选项中,配置输出结果的路径与文件名称;随后,第三个选项是设置重采样后栅格像元大小的参数,可以直接通过其下方XY的数值来指定像元大小,也可以通过其他栅格文件来指定;最后,第四个选项就是重采样所采用的方法。

  上述窗口中的参数整体也都很简单,也非常好理解;但主要是最后一个选项,也就是重采样方法的选择值得进一步探究。在实际应用过程中,我们究竟该选择哪一个方法呢?我们来看一下ArcGIS官网对不同方法的介绍;如下图所示。

  可以看到,ArcGIS官方一共提供了4种栅格数据重采样的方法,分别是最邻近分配法(NEAREST)、众数算法(MAJORITY)、双线性插值法(BILINEAR)与三次卷积插值法(CUBIC)。

  首先,最邻近分配法是速度最快的插值方法。这一方法主要用于离散数据(如土地利用分类数据),因为这一方法不会更改像元的值。使用这一方法进行重采样,最大空间误差将是像元大小的一半。

  其次,众数算法根据过滤器窗口中频率最高的数值来作为像元的新值。其与最邻近分配法一样,主要用于离散数据;但与最邻近分配法相比,众数算法通常可生成更平滑的结果。众数算法将在与输出像元中心最接近的输入空间中查找相应的4 x 4像元,并使用4 x 4相邻点的众数作为像元的新值。

  再次,双线性插值法基于四个最邻近的输入像元中心的加权平均距离来确定像元的新值。这一方法对连续数据非常有用(且只能对连续数据使用),且会对数据进行一些平滑处理。

  最后,三次卷积插值法通过拟合穿过16个最邻近输入像元中心的平滑曲线确定像元的新值。这一方法仅适用于连续数据,但要注意其所生成的输出栅格可能会包含输入栅格范围以外的值。如果大家不想出现这种情况,按照官方的说法,就需要转而使用双线性插值法。与通过运行最邻近分配法获得的栅格相比,三次卷积插值法的输出结果的几何变形程度较小。三次卷积插值法的缺点是需要更多的处理时间。

  了解上述原理,我们就对选择哪一个方法有了比较清楚地认识。例如,我这里需要进行重采样操作的是一个类别数据,因此就只能选择最邻近分配法众数算法;而后,我们可以结合实际需要进行两种方法的二选一即可(或者直接用两种方法运行一遍,看看哪一个方法对应的结果更符合自己的需要)。如果大家需要进行重采样操作的是连续数据,那么四种方法理论上都是可以的,但是后两种方法相对更适合一些;大家结合需要选择或者分别运行一次,找到最合适的结果即可。

  重采样后,可以看到结果数据中像元的大小已经是我们需要的数值了。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
4月前
|
算法 定位技术 图形学
矢量线的一种栅格化算法
矢量线的一种栅格化算法
32 0
|
6月前
|
算法 前端开发 Linux
【常用技巧】C++ STL容器操作:6种常用场景算法
STL在Linux C++中使用的非常普遍,掌握并合适的使用各种容器至关重要!
96 10
|
6月前
|
算法
数据结构和算法学习记录——二叉搜索树的插入操作、删除操作
数据结构和算法学习记录——二叉搜索树的插入操作、删除操作
36 0
|
6月前
|
算法
数据结构和算法学习记录——认识二叉搜索树及二叉搜索树的查找操作(递归以及迭代实现-查找操作、查找最大和最小元素)
数据结构和算法学习记录——认识二叉搜索树及二叉搜索树的查找操作(递归以及迭代实现-查找操作、查找最大和最小元素)
60 0
|
7月前
|
机器学习/深度学习 人工智能 运维
人工智能平台PAI 操作报错合集之请问Alink的算法中的序列异常检测组件,是对数据进行分组后分别在每个组中执行异常检测,而不是将数据看作时序数据进行异常检测吧
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
7月前
|
算法 测试技术 C++
【数论】【分类讨论】【C++算法】1611使整数变为 0 的最少操作次数
【数论】【分类讨论】【C++算法】1611使整数变为 0 的最少操作次数
|
7月前
|
定位技术 Python
ArcGIS批量拼接大量栅格遥感影像:Mosaic工具
ArcGIS批量拼接大量栅格遥感影像:Mosaic工具
261 1
|
7月前
|
定位技术
ArcGIS中ArcMap创建渔网Create Fishnet:生成指定大小的格网矢量文件
ArcGIS中ArcMap创建渔网Create Fishnet:生成指定大小的格网矢量文件
230 1
|
7月前
|
算法 定位技术
ArcGIS中ArcMap栅格图像平滑滤波:焦点统计、滤波器、重采样
ArcGIS中ArcMap栅格图像平滑滤波:焦点统计、滤波器、重采样
300 1
|
7月前
|
并行计算 定位技术
ArcGIS中ArcMap分割栅格Split Raster工具没有结果的解决
ArcGIS中ArcMap分割栅格Split Raster工具没有结果的解决
240 1