助力工业物联网,工业大数据之服务域:AirFlow的架构组件【三十二】

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 助力工业物联网,工业大数据之服务域:AirFlow的架构组件【三十二】

知识点05:AirFlow的架构组件

  • 目标:了解AirFlow的架构组件
  • 路径
  • step1:架构
  • step2:组件
  • 实施
  • 架构
  • Client:开发AirFlow调度的程序的客户端,用于开发AirFlow的Python程序
  • Master:分布式架构中的主节点,负责运行WebServer和Scheduler
  • Worker:负责运行Execution执行提交的工作流中的Task
  • 组件
A scheduler, which handles both triggering scheduled workflows, and submitting Tasks to the executor to run.
An executor, which handles running tasks. In the default Airflow installation, this runs everything inside the scheduler, but most production-suitable executors actually push task execution out to workers.
A webserver, which presents a handy user interface to inspect, trigger and debug the behaviour of DAGs and tasks.
A folder of DAG files, read by the scheduler and executor (and any workers the executor has)
A metadata database, used by the scheduler, executor and webserver to store state.
  • WebServer:提供交互界面和监控,让开发者调试和监控所有Task的运行
  • Scheduler:负责解析和调度Task任务提交到Execution中运行
  • Executor:执行组件,负责运行Scheduler分配的Task,运行在Worker中
  • DAG Directory:DAG程序的目录,将自己开发的程序放入这个目录,AirFlow的WebServer和Scheduler会自动读取
  • airflow将所有程序放在一个目录中
  • 自动检测这个目录有么有新的程序
  • MetaData DataBase:AirFlow的元数据存储数据库,记录所有DAG程序的信息
  • 小结
  • 了解AirFlow的架构组件

知识点06:AirFlow的开发规则

  • 目标掌握AirFlow的开发规则
  • 路径
  • step1:开发Python调度程序
  • step2:提交Python调度程序
  • 实施
  • 官方文档
  • 示例:http://airflow.apache.org/docs/apache-airflow/stable/tutorial.html
  • 开发Python调度程序
  • 开发一个Python程序,程序文件中需要包含以下几个部分
  • 注意:该文件的运行不支持utf8编码,不能写中文
  • step1:导包
# 必选:导入airflow的DAG工作流
from airflow import DAG
# 必选:导入具体的TaskOperator类型
from airflow.operators.bash import BashOperator
# 可选:导入定时工具的包
from airflow.utils.dates import days_ago
  • step2:定义DAG及配置
# 当前工作流的基础配置
default_args = {
    # 当前工作流的所有者
    'owner': 'airflow',
    # 当前工作流的邮件接受者邮箱
    'email': ['airflow@example.com'],
    # 工作流失败是否发送邮件告警
    'email_on_failure': True,
    # 工作流重试是否发送邮件告警
    'email_on_retry': True,
    # 重试次数
    'retries': 2,
    # 重试间隔时间
    'retry_delay': timedelta(minutes=1),
}
# 定义当前工作流的DAG对象
dagName = DAG(
    # 当前工作流的名称,唯一id
    'airflow_name',
    # 使用的参数配置
    default_args=default_args,
    # 当前工作流的描述
    description='first airflow task DAG',
    # 当前工作流的调度周期:定时调度【可选】
    schedule_interval=timedelta(days=1),
    # 工作流开始调度的时间
    start_date=days_ago(1),
    # 当前工作流属于哪个组
    tags=['itcast_bash'],
)
  • 构建一个DAG工作流的实例和配置
  • step3:定义Tasks
  • 执行Linux命令
  • 执行Python代码
  • 发送邮件的
  • 其他
  • BashOperator:定义一个Shell命令的Task
# 导入BashOperator
from airflow.operators.bash import BashOperator
# 定义一个Task的对象
t1 = BashOperator(
  # 指定唯一的Task的名称
    task_id='first_bashoperator_task',
  # 指定具体要执行的Linux命令
    bash_command='echo "hello airflow"',
  # 指定属于哪个DAG对象
    dag=dagName
)
  • PythonOperator:定义一个Python代码的Task
# 导入PythonOperator
from airflow.operators.python import PythonOperator
# 定义需要执行的代码逻辑
def sayHello():
    print("this is a programe")
#定义一个Task对象
t2 = PythonOperator(
    # 指定唯一的Task的名称
    task_id='first_pyoperator_task',
    # 指定调用哪个Python函数
    python_callable=sayHello,
    # 指定属于哪个DAG对象
    dag=dagName
)
  • step4:运行Task并指定依赖关系
  • 定义Task
Task1:runme_0
Task2:runme_1
Task3:runme_2
Task4:run_after_loop
Task5:also_run_this
Task6:this_will_skip
Task7:run_this_last
  • 需求
  • Task1、Task2、Task3并行运行,结束以后运行Task4
  • Task4、Task5、Task6并行运行,结束以后运行Task7

  • 代码
task1 >> task4
task2 >> task4
task3 >> task4
task4 >> task7
task5 >> task7
task6 >> task7
  • 如果只有一个Task,只要直接写上Task对象名称即可
task1
  • 提交Python调度程序
  • 哪种提交都需要等待一段时间
  • 自动提交:需要等待自动检测
  • 将开发好的程序放入AirFlow的DAG Directory目录中
  • 默认路径为:/root/airflow/dags
  • 手动提交:手动运行文件让airflow监听加载
python xxxx.py
  • 调度状态
  • No status (scheduler created empty task instance):调度任务已创建,还未产生任务实例
  • Scheduled (scheduler determined task instance needs to run):调度任务已生成任务实例,待运行
  • Queued (scheduler sent task to executor to run on the queue):调度任务开始在executor执行前,在队列中
  • Running (worker picked up a task and is now running it):任务在worker节点上执行中
  • Success (task completed):任务执行成功完成
  • 小结
  • 掌握AirFlow的开发规则


相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
打赏
0
0
0
0
113
分享
相关文章
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
180 5
物联网卡在工业领域的应用
物联网卡在工业领域的应用极大地推动了行业的智能化、自动化和高效化进程。以下是物联网卡在工业领域中各操作类型中的具体应用作用:
物联网与大数据:揭秘万物互联的新纪元
物联网与大数据:揭秘万物互联的新纪元
184 7
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
265 3
大数据-54 Kafka 安装配置 环境变量配置 启动服务 Ubuntu配置 ZooKeeper
物联网、大数据、云计算、人工智能之间的关系
物联网、大数据、云计算、人工智能之间的关系是紧密相连、相互促进的。这四者既有各自独立的技术特征,又能在不同层面上相互融合,共同推动信息技术的发展和应用。
2428 0
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
169 3
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
204 3
AIoT智能物联网平台技术架构
AIoT智能物联网平台的技术架构从终端设备到物联网平台可分为边缘侧网关、接入网关层、基础设施层、中台层和应用层。
513 14
物联网怎么推动工业数字化转型?
物联网(Internet of Things,loT)是指通过信息传感设备,如射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等装置,按约定的协议,将任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
98 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问