深入浅出Zookeeper源码(四):Watch实现剖析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 用过zookeeper的同学都知道watch是一个非常好用的机制,今天我们就来看看它的实现原理。在正文开始前,我们先来简单回忆一下watch是什么?zk提供了分布式数据的发布/订阅功能——即典型的发布订阅模型,其定义了一种一对多的订阅关系,能够让多个订阅者同时监听某个主题对象,当这个主题对象自身状态变化时,则会通知所有订阅者。具体来说,则是zk允许一个客户端向服务端注册一个watch监听,当服务端的一些指定事件触发了这个watch,那么就会向该客户端发送事件通知。
版本 日期 备注
1.0 2020.4.8 文章首发
1.1 2020.4.18 优化小结部分描述,使其更加详细易懂
1.2 2020.8.10 删除部分不重要的代码,减少篇幅,优化描述方式
1.3 2021.6.23 标题从深入浅出Zookeeper(四):Watch实现剖析改变为深入浅出Zookeeper源码(四):Watch实现剖析

1. 前言

本文面向读者:有java基础并对zk源码实现感兴趣的同学。

用过zookeeper的同学都知道watch是一个非常好用的机制,今天我们就来看看它的实现原理。

在正文开始前,我们先来简单回忆一下watch是什么?

zk提供了分布式数据的发布/订阅功能——即典型的发布订阅模型,其定义了一种一对多的订阅关系,能够让多个订阅者同时监听某个主题对象,当这个主题对象自身状态变化时,则会通知所有订阅者。具体来说,则是zk允许一个客户端向服务端注册一个watch监听,当服务端的一些指定事件触发了这个watch,那么就会向该客户端发送事件通知。

2. 实现剖析

在剖析其实现前,我们不妨来想一想,如果自己动手实现一个watch机制,该怎么做呢?

最简单的方法是在client保存当前节点的版本,并去轮询这个节点的状态。如果发现版本变化,则client触发watch。不过比起轮询,不是有更多的好方法,不是吗?

轮询会给服务器带来不小的压力,或许我们可以考虑采用类似webhook的方式,让server保存和client约定好的地址,当watch的数据节点发生变化时,便通知client。

想到这儿,其实已经和zk自己的watch实现有点像了。沿着这个思路,我们开始剖析:

一般我们在使用client时,getDatagetChildrenexist都可以用来向zk注册watcher。其原理都是一样的,我们以exist方法为例子进行剖析——即当关注的节点被创建or删除时,client会收到通知。

2.1 客户端的实现

先从客户端部分开始解析——即以我们调用的原生API为入口。

2.1.1 Zookeeper.exists

    /**
     * The asynchronous version of exists.
     *
     * @see #exists(String, Watcher)
     */
    public void exists(final String path, Watcher watcher,
            StatCallback cb, Object ctx)
    {
   
   
        final String clientPath = path;
        PathUtils.validatePath(clientPath);

        // the watch contains the un-chroot path
        WatchRegistration wcb = null;  //1.
        if (watcher != null) {
   
   
            wcb = new ExistsWatchRegistration(watcher, clientPath);
        }

        final String serverPath = prependChroot(clientPath);

        RequestHeader h = new RequestHeader();
        h.setType(ZooDefs.OpCode.exists);
        ExistsRequest request = new ExistsRequest();
        request.setPath(serverPath);
        request.setWatch(watcher != null);//3.
        SetDataResponse response = new SetDataResponse();
        cnxn.queuePacket(h, new ReplyHeader(), request, response, cb,
                clientPath, serverPath, ctx, wcb); //2.
    }
AI 代码解读

和watch相关的地方有两处,一个是其被转换成WatchRegistration中的一个属性(见注释标记1),最后变成一个Packet——即client与server的最小通信单元(见注释标记2)。

另外一处则是request.setWatch(watcher != null),是个布尔变量。(见注释标记3)

2.1.2 ClientCnxn.queuePacket

在上文中的最后一段代码是 cnxn.queuePacket(h, new ReplyHeader(), request, response, cb,clientPath, serverPath, ctx, wcb);,我们继续看下去。

   public Packet queuePacket(RequestHeader h, ReplyHeader r, Record request,
            Record response, AsyncCallback cb, String clientPath,
            String serverPath, Object ctx, WatchRegistration watchRegistration) {
   
   
        return queuePacket(h, r, request, response, cb, clientPath, serverPath,
                ctx, watchRegistration, null);
    }

    public Packet queuePacket(RequestHeader h, ReplyHeader r, Record request,
            Record response, AsyncCallback cb, String clientPath,
            String serverPath, Object ctx, WatchRegistration watchRegistration,
            WatchDeregistration watchDeregistration) {
   
   
        Packet packet = null;

        // Note that we do not generate the Xid for the packet yet. It is
        // generated later at send-time, by an implementation of ClientCnxnSocket::doIO(),
        // where the packet is actually sent.
        packet = new Packet(h, r, request, response, watchRegistration);
        packet.cb = cb;
        packet.ctx = ctx;
        packet.clientPath = clientPath;
        packet.serverPath = serverPath;
        packet.watchDeregistration = watchDeregistration;
        // The synchronized block here is for two purpose:
        // 1. synchronize with the final cleanup() in SendThread.run() to avoid race
        // 2. synchronized against each packet. So if a closeSession packet is added,
        // later packet will be notified.
        synchronized (state) {
   
   
            if (!state.isAlive() || closing) {
   
   
                conLossPacket(packet);
            } else {
   
   
                // If the client is asking to close the session then
                // mark as closing
                if (h.getType() == OpCode.closeSession) {
   
   
                    closing = true;
                }
                outgoingQueue.add(packet);
            }
        }
        sendThread.getClientCnxnSocket().packetAdded();
        return packet;
    }
AI 代码解读

这段代码看起来很多,不过仅仅在做一件事——即拼装Packet,并将其加入发送队列。该队列由ClientCnxn中的一个SendThread消费(见SendThread.run)。该方法有较多的条件分支,且不够clean code,故在此不再贴代码,避免扰乱视听。

从下面的代码可以得知,在Zk的client中,会维护发送队列和等待回复的队列,里面都是一个个Packet。

    /**
     * These are the packets that have been sent and are waiting for a response.
     */
    private final LinkedList<Packet> pendingQueue = new LinkedList<Packet>();

    /**
     * These are the packets that need to be sent.
     */
    private final LinkedBlockingDeque<Packet> outgoingQueue = new LinkedBlockingDeque<Packet>();
AI 代码解读

接下来,我们查看SendThread.readReponse,即消费client队列中Packet的逻辑:

        void readResponse(ByteBuffer incomingBuffer) throws IOException {
   
   
            ByteBufferInputStream bbis = new ByteBufferInputStream(
                    incomingBuffer);
            BinaryInputArchive bbia = BinaryInputArchive.getArchive(bbis);
            ReplyHeader replyHdr = new ReplyHeader();

            replyHdr.deserialize(bbia, "header");
            if (replyHdr.getXid() == -2) {
   
   
                // -2 is the xid for pings
                if (LOG.isDebugEnabled()) {
   
   
                    LOG.debug("Got ping response for sessionid: 0x"
                            + Long.toHexString(sessionId)
                            + " after "
                            + ((System.nanoTime() - lastPingSentNs) / 1000000)
                            + "ms");
                }
                return;
            }
            if (replyHdr.getXid() == -4) {
   
   
                // -4 is the xid for AuthPacket               
                if(replyHdr.getErr() == KeeperException.Code.AUTHFAILED.intValue()) {
   
   
                    state = States.AUTH_FAILED;                    
                    eventThread.queueEvent( new WatchedEvent(Watcher.Event.EventType.None, 
                            Watcher.Event.KeeperState.AuthFailed, null) );
                    eventThread.queueEventOfDeath();
                }
                if (LOG.isDebugEnabled()) {
   
   
                    LOG.debug("Got auth sessionid:0x"
                            + Long.toHexString(sessionId));
                }
                return;
            }
            if (replyHdr.getXid() == -1) {
   
   
                // -1 means notification
                if (LOG.isDebugEnabled()) {
   
   
                    LOG.debug("Got notification sessionid:0x"
                        + Long.toHexString(sessionId));
                }
                WatcherEvent event = new WatcherEvent();
                event.deserialize(bbia, "response");

                // convert from a server path to a client path
                if (chrootPath != null) {
   
   
                    String serverPath = event.getPath();
                    if(serverPath.compareTo(chrootPath)==0)
                        event.setPath("/");
                    else if (serverPath.length() > chrootPath.length())
                        event.setPath(serverPath.substring(chrootPath.length()));
                    else {
   
   
                        LOG.warn("Got server path " + event.getPath()
                                + " which is too short for chroot path "
                                + chrootPath);
                    }
                }

                WatchedEvent we = new WatchedEvent(event);
                if (LOG.isDebugEnabled()) {
   
   
                    LOG.debug("Got " + we + " for sessionid 0x"
                            + Long.toHexString(sessionId));
                }

                eventThread.queueEvent( we );
                return;
            }

            // If SASL authentication is currently in progress, construct and
            // send a response packet immediately, rather than queuing a
            // response as with other packets.
            if (tunnelAuthInProgress()) {
   
   
                GetSASLRequest request = new GetSASLRequest();
                request.deserialize(bbia,"token");
                zooKeeperSaslClient.respondToServer(request.getToken(),
                  ClientCnxn.this);
                return;
            }

            Packet packet;
            synchronized (pendingQueue) {
   
   
                if (pendingQueue.size() == 0) {
   
   
                    throw new IOException("Nothing in the queue, but got "
                            + replyHdr.getXid());
                }
                packet = pendingQueue.remove();
            }
            /*
             * Since requests are processed in order, we better get a response
             * to the first request!
             */
            try {
   
   
                if (packet.requestHeader.getXid() != replyHdr.getXid()) {
   
   
                    packet.replyHeader.setErr(
                            KeeperException.Code.CONNECTIONLOSS.intValue());
                    throw new IOException("Xid out of order. Got Xid "
                            + replyHdr.getXid() + " with err " +
                            + replyHdr.getErr() +
                            " expected Xid "
                            + packet.requestHeader.getXid()
                            + " for a packet with details: "
                            + packet );
                }

                packet.replyHeader.setXid(replyHdr.getXid());
                packet.replyHeader.setErr(replyHdr.getErr());
                packet.replyHeader.setZxid(replyHdr.getZxid());
                if (replyHdr.getZxid() > 0) {
   
   
                    lastZxid = replyHdr.getZxid();
                }
                if (packet.response != null && replyHdr.getErr() == 0) {
   
   
                    packet.response.deserialize(bbia, "response");
                }

                if (LOG.isDebugEnabled()) {
   
   
                    LOG.debug("Reading reply sessionid:0x"
                            + Long.toHexString(sessionId) + ", packet:: " + packet);
                }
            } finally {
   
   
                finishPacket(packet);
            }
        }
AI 代码解读

synchronized (pendingQueue)中,我们可以看到从队列中拿出了Packet,并最后将其丢入了finishPacket

    protected void finishPacket(Packet p) {
   
   
        int err = p.replyHeader.getErr();
        if (p.watchRegistration != null) {
   
   
            p.watchRegistration.register(err);
        }
        // Add all the removed watch events to the event queue, so that the
        // clients will be notified with 'Data/Child WatchRemoved' event type.
        if (p.watchDeregistration != null) {
   
   
            Map<EventType, Set<Watcher>> materializedWatchers = null;
            try {
   
   
                materializedWatchers = p.watchDeregistration.unregister(err);
                for (Entry<EventType, Set<Watcher>> entry : materializedWatchers
                        .entrySet()) {
   
   
                    Set<Watcher> watchers = entry.getValue();
                    if (watchers.size() > 0) {
   
   
                        queueEvent(p.watchDeregistration.getClientPath(), err,
                                watchers, entry.getKey());
                        // ignore connectionloss when removing from local
                        // session
                        p.replyHeader.setErr(Code.OK.intValue());
                    }
                }
            } catch (KeeperException.NoWatcherException nwe) {
   
   
                p.replyHeader.setErr(nwe.code().intValue());
            } catch (KeeperException ke) {
   
   
                p.replyHeader.setErr(ke.code().intValue());
            }
        }

        if (p.cb == null) {
   
   
            synchronized (p) {
   
   
                p.finished = true;
                p.notifyAll();
            }
        } else {
   
   
            p.finished = true;
            eventThread.queuePacket(p);
        }
    }
AI 代码解读

这段方法中,我们会分析这两段逻辑:

  • p.watchRegistration.register
  • queueEvent

2.1.3 watchRegistration

需要注意的是,WatchRegistration在Packet发送前并不会被序列化发送过去,避免发送不必要的信息,毕竟已经在request中标记为watch了。那么这个WatchRegistration有什么用呢?还好register的逻辑很简单,我们来看一下:

        /**
         * Register the watcher with the set of watches on path.
         * @param rc the result code of the operation that attempted to
         * add the watch on the path.
         */
        public void register(int rc) {
   
   
            if (shouldAddWatch(rc)) {
   
   
                Map<String, Set<Watcher>> watches = getWatches(rc);
                synchronized(watches) {
   
   
                    Set<Watcher> watchers = watches.get(clientPath);
                    if (watchers == null) {
   
   
                        watchers = new HashSet<Watcher>();
                        watches.put(clientPath, watchers);
                    }
                    watchers.add(watcher);
                }
            }
        }
AI 代码解读

2.1.4 queueEvent

代码比较少,可以看到client维护了一个path-watchers的字典,到这里,相信大多数读者都能猜到实现了——即收到回复时根据相应的path去找对应wacher。接下来来看queueEvent

    void queueEvent(String clientPath, int err,
            Set<Watcher> materializedWatchers, EventType eventType) {
   
   
        KeeperState sessionState = KeeperState.SyncConnected;
        if (KeeperException.Code.SESSIONEXPIRED.intValue() == err
                || KeeperException.Code.CONNECTIONLOSS.intValue() == err) {
   
   
            sessionState = Event.KeeperState.Disconnected;
        }
        WatchedEvent event = new WatchedEvent(eventType, sessionState,
                clientPath);
        eventThread.queueEvent(event, materializedWatchers);
    }
AI 代码解读

逻辑很简单,判断状态,然后组装event,交给eventThread去做通知。

        private void queueEvent(WatchedEvent event,
                Set<Watcher> materializedWatchers) {
   
   
            if (event.getType() == EventType.None
                    && sessionState == event.getState()) {
   
   
                return;
            }
            sessionState = event.getState();
            final Set<Watcher> watchers;
            if (materializedWatchers == null) {
   
   
                // materialize the watchers based on the event
                watchers = watcher.materialize(event.getState(),
                        event.getType(), event.getPath());
            } else {
   
   
                watchers = new HashSet<Watcher>();
                watchers.addAll(materializedWatchers);
            }
            WatcherSetEventPair pair = new WatcherSetEventPair(watchers, event);
            // queue the pair (watch set & event) for later processing
            waitingEvents.add(pair);
        }
AI 代码解读

ClientWatchManager.materialize不再展示源码,我们只要知道,在这段逻辑中
,当watch被触发后,即会被移除,而状态正是保存在ZkWatchManager里:

   static class ZKWatchManager implements ClientWatchManager {
   
   
        private final Map<String, Set<Watcher>> dataWatches =
            new HashMap<String, Set<Watcher>>();
        private final Map<String, Set<Watcher>> existWatches =
            new HashMap<String, Set<Watcher>>();
        private final Map<String, Set<Watcher>> childWatches =
            new HashMap<String, Set<Watcher>>();
//......
}
AI 代码解读

再说回来eventThread.run最后做的事情——即入队。那么我们来看看这个线程的核心方法:

@Override        
@SuppressFBWarnings("JLM_JSR166_UTILCONCURRENT_MONITORENTER")
        public void run() {
   
   
           try {
   
   
              isRunning = true;
              while (true) {
   
   
                 Object event = waitingEvents.take();
                 if (event == eventOfDeath) {
   
   
                    wasKilled = true;
                 } else {
   
   
                    processEvent(event);
                 }
                 if (wasKilled)
                    synchronized (waitingEvents) {
   
   
                       if (waitingEvents.isEmpty()) {
   
   
                          isRunning = false;
                          break;
                       }
                    }
              }
           } catch (InterruptedException e) {
   
   
              LOG.error("Event thread exiting due to interruption", e);
           }

            LOG.info("EventThread shut down for session: 0x{}",
                     Long.toHexString(getSessionId()));
        }
AI 代码解读

又是熟悉的配方熟悉的味道——就是一个死循环去消费队列里的元素,然后我们来看看processEvent:

       private void processEvent(Object event) {
   
   
          try {
   
   
              if (event instanceof WatcherSetEventPair) {
   
   
                  // each watcher will process the event
                  WatcherSetEventPair pair = (WatcherSetEventPair) event;
                  for (Watcher watcher : pair.watchers) {
   
   
                      try {
   
   
                          watcher.process(pair.event);
                      } catch (Throwable t) {
   
   
                          LOG.error("Error while calling watcher ", t);
                      }
                  }
                } else if (event instanceof LocalCallback) {
   
   
                    //在本文中这些逻辑不重要,skip
                  }
AI 代码解读

当process被调用后,我们自己编写的逻辑就会被触发。

看完客户端部分的代码,大家不妨可以思考思考,将一个上层的机制(watch)与底层的通信代码(如finishPacket)显示的写在一起真的好吗?如果让你来写,你会怎么做呢?

2.2 服务端实现

在上文,我们了解了client的watch相关实现,接下来,我们就来捋一捋服务端的watch实现。

我们直接到ZkServer handle request的地方——FinalRequestProcessorprocessRequest中的相关部分:

            case OpCode.exists: {
   
   
                lastOp = "EXIS";
                // TODO we need to figure out the security requirement for this!
                ExistsRequest existsRequest = new ExistsRequest();
                ByteBufferInputStream.byteBuffer2Record(request.request,
                        existsRequest);
                String path = existsRequest.getPath();
                if (path.indexOf('\0') != -1) {
   
   
                    throw new KeeperException.BadArgumentsException();
                }
                Stat stat = zks.getZKDatabase().statNode(path, existsRequest
                        .getWatch() ? cnxn : null);
                rsp = new ExistsResponse(stat);
                break;
            }
AI 代码解读

可以看到,如果request是要求watch的,那么会将ServerCnxn传递下去,ServerCnxn代表了客户端和服务器之间的连接。这样当数据事件发生时,可以通过连接触发client的watch。

跳转DataTree.statNode:

    public Stat statNode(String path, Watcher watcher)
            throws KeeperException.NoNodeException {
   
   
        Stat stat = new Stat();
        DataNode n = nodes.get(path);
        if (watcher != null) {
   
   
            dataWatches.addWatch(path, watcher);
        }
        if (n == null) {
   
   
            throw new KeeperException.NoNodeException();
        }
        synchronized (n) {
   
   
            n.copyStat(stat);
            return stat;
        }
    }
AI 代码解读

watcher != null时,则会添加一个watcher当服务端的dataWatches中。接下来,我们来看一下服务端的watch核心类——WatchManager:

/**
 * This class manages watches. It allows watches to be associated with a string
 * and removes watchers and their watches in addition to managing triggers.
 */
class WatchManager {
   
   
    private static final Logger LOG = LoggerFactory.getLogger(WatchManager.class);

    private final HashMap<String, HashSet<Watcher>> watchTable =
        new HashMap<String, HashSet<Watcher>>();

    private final HashMap<Watcher, HashSet<String>> watch2Paths =
        new HashMap<Watcher, HashSet<String>>();

    synchronized int size(){
   
   
        int result = 0;
        for(Set<Watcher> watches : watchTable.values()) {
   
   
            result += watches.size();
        }
        return result;
    }

    synchronized void addWatch(String path, Watcher watcher) {
   
   
        HashSet<Watcher> list = watchTable.get(path);
        if (list == null) {
   
   
            // don't waste memory if there are few watches on a node
            // rehash when the 4th entry is added, doubling size thereafter
            // seems like a good compromise
            list = new HashSet<Watcher>(4);
            watchTable.put(path, list);
        }
        list.add(watcher);

        HashSet<String> paths = watch2Paths.get(watcher);
        if (paths == null) {
   
   
            // cnxns typically have many watches, so use default cap here
            paths = new HashSet<String>();
            watch2Paths.put(watcher, paths);
        }
        paths.add(path);
    }

    synchronized void removeWatcher(Watcher watcher) {
   
   
        HashSet<String> paths = watch2Paths.remove(watcher);
        if (paths == null) {
   
   
            return;
        }
        for (String p : paths) {
   
   
            HashSet<Watcher> list = watchTable.get(p);
            if (list != null) {
   
   
                list.remove(watcher);
                if (list.size() == 0) {
   
   
                    watchTable.remove(p);
                }
            }
        }
    }

    Set<Watcher> triggerWatch(String path, EventType type) {
   
   
        return triggerWatch(path, type, null);
    }

    Set<Watcher> triggerWatch(String path, EventType type, Set<Watcher> supress) {
   
   
        WatchedEvent e = new WatchedEvent(type,
                KeeperState.SyncConnected, path);
        HashSet<Watcher> watchers;
        synchronized (this) {
   
   
            watchers = watchTable.remove(path);
            if (watchers == null || watchers.isEmpty()) {
   
   
                if (LOG.isTraceEnabled()) {
   
   
                    ZooTrace.logTraceMessage(LOG,
                            ZooTrace.EVENT_DELIVERY_TRACE_MASK,
                            "No watchers for " + path);
                }
                return null;
            }
            for (Watcher w : watchers) {
   
   
                HashSet<String> paths = watch2Paths.get(w);
                if (paths != null) {
   
   
                    paths.remove(path);
                }
            }
        }
        for (Watcher w : watchers) {
   
   
            if (supress != null && supress.contains(w)) {
   
   
                continue;
            }
            w.process(e);
        }
        return watchers;
    }

    /**
     * Brief description of this object.
     */
    @Override
    public synchronized String toString() {
   
   
        StringBuilder sb = new StringBuilder();

        sb.append(watch2Paths.size()).append(" connections watching ")
            .append(watchTable.size()).append(" paths\n");

        int total = 0;
        for (HashSet<String> paths : watch2Paths.values()) {
   
   
            total += paths.size();
        }
        sb.append("Total watches:").append(total);

        return sb.toString();
    }

    /**
     * String representation of watches. Warning, may be large!
     * @param byPath iff true output watches by paths, otw output
     * watches by connection
     * @return string representation of watches
     */
    synchronized void dumpWatches(PrintWriter pwriter, boolean byPath) {
   
   
        if (byPath) {
   
   
            for (Entry<String, HashSet<Watcher>> e : watchTable.entrySet()) {
   
   
                pwriter.println(e.getKey());
                for (Watcher w : e.getValue()) {
   
   
                    pwriter.print("\t0x");
                    pwriter.print(Long.toHexString(((ServerCnxn)w).getSessionId()));
                    pwriter.print("\n");
                }
            }
        } else {
   
   
            for (Entry<Watcher, HashSet<String>> e : watch2Paths.entrySet()) {
   
   
                pwriter.print("0x");
                pwriter.println(Long.toHexString(((ServerCnxn)e.getKey()).getSessionId()));
                for (String path : e.getValue()) {
   
   
                    pwriter.print("\t");
                    pwriter.println(path);
                }
            }
        }
    }

    /**
     * Checks the specified watcher exists for the given path
     *
     * @param path
     *            znode path
     * @param watcher
     *            watcher object reference
     * @return true if the watcher exists, false otherwise
     */
    synchronized boolean containsWatcher(String path, Watcher watcher) {
   
   
        HashSet<String> paths = watch2Paths.get(watcher);
        if (paths == null || !paths.contains(path)) {
   
   
            return false;
        }
        return true;
    }

    /**
     * Removes the specified watcher for the given path
     *
     * @param path
     *            znode path
     * @param watcher
     *            watcher object reference
     * @return true if the watcher successfully removed, false otherwise
     */
    synchronized boolean removeWatcher(String path, Watcher watcher) {
   
   
        HashSet<String> paths = watch2Paths.get(watcher);
        if (paths == null || !paths.remove(path)) {
   
   
            return false;
        }

        HashSet<Watcher> list = watchTable.get(path);
        if (list == null || !list.remove(watcher)) {
   
   
            return false;
        }

        if (list.size() == 0) {
   
   
            watchTable.remove(path);
        }

        return true;
    }

    /**
     * Returns a watch report.
     *
     * @return watch report
     * @see WatchesReport
     */
    synchronized WatchesReport getWatches() {
   
   
        Map<Long, Set<String>> id2paths = new HashMap<Long, Set<String>>();
        for (Entry<Watcher, HashSet<String>> e: watch2Paths.entrySet()) {
   
   
            Long id = ((ServerCnxn) e.getKey()).getSessionId();
            HashSet<String> paths = new HashSet<String>(e.getValue());
            id2paths.put(id, paths);
        }
        return new WatchesReport(id2paths);
    }

    /**
     * Returns a watch report by path.
     *
     * @return watch report
     * @see WatchesPathReport
     */
    synchronized WatchesPathReport getWatchesByPath() {
   
   
        Map<String, Set<Long>> path2ids = new HashMap<String, Set<Long>>();
        for (Entry<String, HashSet<Watcher>> e : watchTable.entrySet()) {
   
   
            Set<Long> ids = new HashSet<Long>(e.getValue().size());
            path2ids.put(e.getKey(), ids);
            for (Watcher watcher : e.getValue()) {
   
   
                ids.add(((ServerCnxn) watcher).getSessionId());
            }
        }
        return new WatchesPathReport(path2ids);
    }

    /**
     * Returns a watch summary.
     *
     * @return watch summary
     * @see WatchesSummary
     */
    synchronized WatchesSummary getWatchesSummary() {
   
   
        int totalWatches = 0;
        for (HashSet<String> paths : watch2Paths.values()) {
   
   
            totalWatches += paths.size();
        }
        return new WatchesSummary (watch2Paths.size(), watchTable.size(),
                                   totalWatches);
    }
}
AI 代码解读

整个类非常好理解,先看两个核心成员变量:

  • watchTable:path-watchs
  • watch2Paths:watcher-paths

addWatch就是往两个map中添加数据,而触发便是根据path遍历出那些watcher,并从内存中删除它们,然后调用它们的process——这时ServerCnxn就会发送一个Packet到client。

那么什么时候触发呢?也很简单。就在DataTree的代码里,对相应数据进行操作时,就会触发watcher。我们以DataTree.setData为例:

    public Stat setData(String path, byte data[], int version, long zxid,
            long time) throws KeeperException.NoNodeException {
   
   
        Stat s = new Stat();
        DataNode n = nodes.get(path);
        if (n == null) {
   
   
            throw new KeeperException.NoNodeException();
        }
        byte lastdata[] = null;
        synchronized (n) {
   
   
            lastdata = n.data;
            n.data = data;
            n.stat.setMtime(time);
            n.stat.setMzxid(zxid);
            n.stat.setVersion(version);
            n.copyStat(s);
        }
        // now update if the path is in a quota subtree.
        String lastPrefix = getMaxPrefixWithQuota(path);
        if(lastPrefix != null) {
   
   
          this.updateBytes(lastPrefix, (data == null ? 0 : data.length)
              - (lastdata == null ? 0 : lastdata.length));
        }
        // 触发处
        dataWatches.triggerWatch(path, EventType.NodeDataChanged);
        return s;
    }
AI 代码解读

至此,我们就理清watch在Zk里到底是怎么一回事了。同时,我们也了解watcher的几个特性:

  1. 一次性:无论是client还是server,一旦watcher被触发,zk都会将其移除。这意味着开发者需要反复注册,但是好处也很明显——降低了服务器压力,避免频繁更新的节点一直触发watcher。
  2. 客户端串行执行:客户端回调是一个串行同步的过程,这使得回调是有序的。同样,开发者要注意不要因为一个watcher的逻辑影响整个client回调。
  3. 轻量:client的request是否要watch其实仅仅通过一个boolean来决定,同样的,server的response的watch回调——WatchedEvent也仅仅只有三个属性:
    • 通知状态
    • 事件类型
    • 节点路径

这种轻量化的设计使得网络开销和服务端内存开销上都是很廉价的。

3. 小结

在本文中,我们一起了解了watch的实现机理。简单总结如下:

  1. client在发送请求时候,会将watch的具体状态保存在client中,即存在于等待回复队列中
  2. 标记watch的request到达服务端后,服务端会将这个watcher(包含client的连接属性)以字典的形式保存在内存中
  3. 当watch的数据发生相应变化时,去字典里找出注册的watch,并拿到对应client连接
  4. 根据连接,发送一个通知到client
  5. client从等待回复队列中取出元素,watch的回调被触发
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
0
0
6
分享
相关文章
深入浅出Zookeeper源码(七):Leader选举
对于一个分布式集群来说,保证数据写入一致性最简单的方式就是依靠一个节点来调度和管理其他节点。在分布式系统中我们一般称其为Leader。
209 6
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
6月前
|
API
【想进大厂还不会阅读源码】ShenYu源码-替换ZooKeeper客户端
ShenYu源码阅读。相信大家碰到源码时经常无从下手,不知道从哪开始阅读😭。我认为有一种办法可以解决大家的困扰!至此,我们发现自己开始从大量堆砌的源码中脱离开来😀。ShenYu是一个异步的,高性能的,跨语言的,响应式的 API 网关。
深入浅出Zookeeper源码(六):客户端的请求在服务器中经历了什么
当我们向zk发出一个数据更新请求时,这个请求的处理流程是什么样的?zk又是使用了什么共识算法来保证一致性呢?带着这些问题,我们进入今天的正文。
194 1
深入浅出Zookeeper源码(六):客户端的请求在服务器中经历了什么
|
8月前
|
Apache ZooKeeper - 构建ZooKeeper源码环境及StandAlone模式下的服务端和客户端启动
Apache ZooKeeper - 构建ZooKeeper源码环境及StandAlone模式下的服务端和客户端启动
151 2
深入浅出Zookeeper源码(五):BadVersionException到底是怎么一回事
最近在开发时偶尔会观测到zk报出`BadVersionException`,后在搜索引起上得知了是乐观锁相关的问题,很快就解决了问题。不过学而不思则罔:无论是单体应用还是分布式系统,在运行过程中总要有一种**机制**来保证数据排他性。接下来,我们就来看看zk是如何实现这种**机制**的。
139 1
深入浅出Zookeeper源码(三):会话管理
我们知道zookeeper是一个分布式协同系统。在一个大型的分布式系统中,必然会有大量的client来连接zookeeper。那么zookeeper是如何管理这些session的生命周期呢?带着这个问题,我们进入今天的正文。
135 1
深入浅出Zookeeper源码(六):客户端的请求在服务器中经历了什么
当我们向zk发出一个数据更新请求时,这个请求的处理流程是什么样的?zk又是使用了什么共识算法来保证一致性呢?带着这些问题,我们进入今天的正文。
139 0
深入浅出Zookeeper源码(二):存储技术
在上篇文章中,我们简单提到了Zookeeper的几个核心点。在这篇文章中,我们就来探索其存储技术。在开始前,读者可以考虑思考下列问题: - Zookeeper的数据存储是如何实现的? - Zookeeper进行一次写操作的时候,会发生什么å? - 当一个Zookeeper新加入现有集群时,如何同步现集群中的数据?
97 0
Linux【脚本 03】shell脚本离线安装配置集结JDK+InfluxDB+Zookeeper+Kafka(安装文件及脚本源码网盘分享)
Linux【脚本 03】shell脚本离线安装配置集结JDK+InfluxDB+Zookeeper+Kafka(安装文件及脚本源码网盘分享)
90 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等