大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day15】——Spark2

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据开发岗面试复习30天冲刺 - 日积月累,每日五题【Day15】——Spark2

停🤚
不要往下滑了,
默默想5min,
看看这5道面试题你都会吗?

面试题 01、Spark使用parquet文件存储格式能带来哪些好处?
面试题02、介绍parition和block有什么关联关系?
面试题 03、Spark应用程序的执行过程是什么?
面试题04、不需要排序的hash shuffle是否一定比需要排序的sort shuffle速度快?
面试题05、Sort-based shuffle的缺陷?

以下答案仅供参考:

面试题 01、Spark使用parquet文件存储格式能带来哪些好处?

1)如果说HDFS是大数据时代分布式文件系统首选标准,那么parquet则是整个大数据时代文件存储格式实时首选标准。

2)速度更快:从使用spark sql操作普通文件CSV和parquet文件速度对比上看,绝大多数情况会比使用csv等普通文件速度提升10倍左右,在一些普通文件系统无法在spark上成功运行的情况下,使用parquet很多时候可以成功运行。

3)parquet的压缩技术非常稳定出色,在spark sql中对压缩技术的处理可能无法正常的完成工作(例如会导致lost task,lost executor)但是此时如果使用parquet就可以正常的完成。

4)极大的减少磁盘I/o,通常情况下能够减少75%的存储空间,由此可以极大的减少spark sql处理数据的时候的数据输入内容,尤其是在spark1.6x中有个下推过滤器在一些情况下可以极大的减少磁盘的IO和内存的占用,(下推过滤器)。

5)spark 1.6x parquet方式极大的提升了扫描的吞吐量,极大提高了数据的查找速度spark1.6和spark1.5x相比而言,提升了大约1倍的速度,在spark1.6X中,操作parquet时候cpu也进行了极大的优化,有效的降低了cpu消耗。

6)采用parquet可以极大的优化spark的调度和执行。我们测试spark如果用parquet可以有效的减少stage的执行消耗,同时可以优化执行路径。

面试题02、介绍parition和block有什么关联关系?

1)hdfs中的block是分布式存储的最小单元,等分,可设置冗余,这样设计有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到、读取对应的内容;

2)Spark中的partion是弹性分布式数据集RDD的最小单元,RDD是由分布在各个节点上的partion组成的。partion是指的spark在计算过程中,生成的数据在计算空间内最小单元,同一份数据(RDD)的partion大小不一,数量不定,是根据application里的算子和最初读入的数据分块数量决定;

3)block位于存储空间、partion位于计算空间,block的大小是固定的、partion大小是不固定的,是从2个不同的角度去看数据。

面试题03、Spark应用程序的执行过程是什么?

1)构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请运行Executor资源;

2)资源管理器分配Executor资源并启动StandaloneExecutorBackend,Executor运行情况将随着心跳发送到资源管理器上;

3)SparkContext构建成DAG图,将DAG图分解成Stage,并把Taskset发送给Task Scheduler。Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行同时SparkContext将应用程序代码发放给Executor;

4)Task在Executor上运行,运行完毕释放所有资源。

面试题04、不需要排序的hash shuffle是否一定比需要排序的sort shuffle速度快?

不一定,当数据规模小,Hash shuffle快于Sorted Shuffle数据规模大的时候;当数据量大,sorted Shuffle会比Hash shuffle快很多,因为数量大的有很多小文件,不均匀,甚至出现数据倾斜,消耗内存大,1.x之前spark使用hash,适合处理中小规模,1.x之后,增加了Sorted shuffle,Spark更能胜任大规模处理了。

面试题05、Sort-based shuffle的缺陷?

1)如果mapper中task的数量过大,依旧会产生很多小文件,此时在shuffle传递数据的过程中reducer段,reduce会需要同时大量的记录进行反序列化,导致大量的内存消耗和GC的巨大负担,造成系统缓慢甚至崩溃。

2)如果需要在分片内也进行排序,此时需要进行mapper段和reducer段的两次排序。

总结

今天我们复习了面试中常考的Spark相关的五个问题,你做到心中有数了么?

其实做这个专栏我也有私心,就是希望借助每天写一篇面试题,督促自己学习,以免在面试期间尴尬!平时不流汗,面试多流泪!

对了,如果你的朋友也在准备面试,请将这个系列扔给他,

好了,今天就到这里,学废了的同学,记得在评论区留言:打卡。给同学们以激励。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 安全 Java
每日大厂面试题大汇总 —— 今日的是“美团-后端开发-一面”
文章汇总了美团后端开发一面的面试题目,内容涉及哈希表、HashMap、二叉树遍历、数据库索引、死锁、事务隔离级别、Java对象相等性、多态、线程池拒绝策略、CAS、设计模式、Spring事务传播机制及RPC序列化工具等。
48 0
|
1月前
|
存储 消息中间件 NoSQL
每日大厂面试题大汇总 —— 今日的是“京东-后端开发-一面”
文章汇总了京东后端开发一面的面试题目,包括ArrayList与LinkedList的区别、HashMap的数据结构和操作、线程安全问题、线程池参数、MySQL存储引擎、Redis性能和线程模型、分布式锁处理、HTTP与HTTPS、Kafka等方面的问题。
116 0
|
1月前
|
SQL 安全 关系型数据库
第三次面试总结 - 吉云集团 - 全栈开发
本文是作者对吉云集团全栈开发岗位的第三次面试总结,面试结果非常好,内容全面覆盖了Java基础、MySQL和项目经验,作者认为自己的MySQL基础知识稍弱,需要加强。
35 0
第三次面试总结 - 吉云集团 - 全栈开发
|
1月前
|
消息中间件 存储 前端开发
资深Android开发的5个经典面试题
本文首发于公众号“AntDream”,欢迎关注。文章详细解答了五个常见的Android面试题,涵盖内存泄漏与溢出、Binder机制、MVC/MVP/MVVM架构、Handler机制及Context对象等内容,帮助读者深入了解Android开发的核心概念。
35 0
|
1月前
|
NoSQL 前端开发 关系型数据库
第四次面试总结 — 嘉和智能 - 全栈开发
本文是作者对嘉和智能全栈开发岗位的第四次面试总结,主要围绕对各种技术栈的了解程度进行提问,包括数据库的使用经验、对Redis和nginx的理解以及前端技能水平。
18 0
|
1月前
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
31 0
|
1月前
|
存储 Java 数据库
每日大厂面试题大汇总 —— 今日的是“顺丰-后端开发-一面”
文章汇总了顺丰后端开发一面的面试题目,涵盖了Java虚拟机内存模型、HashMap与ConcurrentHashMap的区别、Spring框架设计模式、SpringBoot与SpringMVC差异、Nacos注册中心原理、Seata分布式架构、MySQL事务隔离级别、数据库死锁问题解决方法、乐观锁实现方式、HBASE底层设计、BIO与NIO区别、以及为何不使用现有开源框架而选择自建平台等问题。
20 0
|
2月前
|
SQL 分布式计算 大数据
代码编码原则和规范大数据开发
此文档详细规定了SQL代码的编写规范,包括代码的清晰度,执行效率,以及注释的必要性。它强调所有SQL关键字需统一使用大写或小写,并禁止使用select *操作。此外,还规定了代码头部的信息模板,字段排列方式,INSERT, SELECT子句的格式,运算符的使用,CASE语句编写规则,查询嵌套规范,表别名定义,以及SQL注释的添加方法。这些规则有助于提升代码的可读性和可维护性。
48 0
|
2月前
|
SQL 分布式计算 大数据
大数据开发SQL代码编码原则和规范
这段SQL编码原则强调代码的功能完整性、清晰度、执行效率及可读性,通过统一关键词大小写、缩进量以及禁止使用模糊操作如select *等手段提升代码质量。此外,SQL编码规范还详细规定了代码头部信息、字段与子句排列、运算符前后间隔、CASE语句编写、查询嵌套、表别名定义以及SQL注释的具体要求,确保代码的一致性和维护性。
98 0
|
3月前
|
C# Windows 开发者
当WPF遇见OpenGL:一场关于如何在Windows Presentation Foundation中融入高性能跨平台图形处理技术的精彩碰撞——详解集成步骤与实战代码示例
【8月更文挑战第31天】本文详细介绍了如何在Windows Presentation Foundation (WPF) 中集成OpenGL,以实现高性能的跨平台图形处理。通过具体示例代码,展示了使用SharpGL库在WPF应用中创建并渲染OpenGL图形的过程,包括开发环境搭建、OpenGL渲染窗口创建及控件集成等关键步骤,帮助开发者更好地理解和应用OpenGL技术。
264 0
下一篇
无影云桌面