docker-compose部署kafka

简介: docker-compose部署kafka

docker-compose.yml配置

version: "3"
services:
  kafka:
    image: 'bitnami/kafka:latest'
    ports:
      - '7050:7050'
    environment:
      - KAFKA_ENABLE_KRAFT=yes
      - KAFKA_CFG_PROCESS_ROLES=broker,controller
      - KAFKA_CFG_CONTROLLER_LISTENER_NAMES=CONTROLLER
      - KAFKA_CFG_LISTENERS=PLAINTEXT://:7050,CONTROLLER://:7051
      - KAFKA_CFG_LISTENER_SECURITY_PROTOCOL_MAP=CONTROLLER:PLAINTEXT,PLAINTEXT:PLAINTEXT
      - KAFKA_CFG_ADVERTISED_LISTENERS=PLAINTEXT://183.56.203.157:7050
      - KAFKA_BROKER_ID=1
      - KAFKA_CFG_CONTROLLER_QUORUM_VOTERS=1@0.0.0.0:7051
      - ALLOW_PLAINTEXT_LISTENER=yes

kafka UI界面

docker run -d --name kafka-map -p 8049:8080 -e DEFAULT_USERNAME=admin -e DEFAULT_PASSWORD=admin dushixiang/kafka-map:latest

docker run -p 8080:8080 -e KAFKA_BROKERS=host.docker.internal:9092 docker.redpanda.com/vectorized/console:master-173596f

UI界面总览

https://towardsdatascience.com/overview-of-ui-tools-for-monitoring-and-management-of-apache-kafka-clusters-8c383f897e80

kafka学习

生产者
import org.apache.kafka.clients.producer.Callback
import org.apache.kafka.clients.producer.KafkaProducer
import org.apache.kafka.clients.producer.ProducerConfig
import org.apache.kafka.clients.producer.ProducerRecord
import org.apache.kafka.common.serialization.StringSerializer
import org.junit.Test
import java.util.*
/**
 * @Description :
 * @Author  xiaomh
 * @date  2022/8/5 15:58
 */
class CustomProducer {
    //异步发送
    @Test
    fun customProducer() {
        //配置
        val properties = Properties()
        //链接kafka
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //发送数据
        for (i in 0 until 5) {
            //黏性发送,达到设置的数据最大值/时间后,切换分区(不会是当前分区)
            kafkaProducer.send(ProducerRecord("xiao1", "customProducer,count::$i"))
        }
        //关闭资源
        kafkaProducer.close()
    }
    //同步发送
    @Test
    fun customProducerSync() {
        //配置
        val properties = Properties()
        //链接kafka
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //发送数据
        for (i in 0 until 5) {
            //黏性发送,达到设置的数据最大值/时间后,切换分区(不会是当前分区)
            kafkaProducer.send(ProducerRecord("xiao1", "customProducerSync,count::$i")).get()
        }
        //关闭资源
        kafkaProducer.close()
    }
    //回调异步发送
    @Test
    fun customProducerCallback() {
        //配置
        val properties = Properties()
        //链接kafka
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //发送数据
        for (i in 0 until 500) {
            //黏性发送,达到设置的数据最大值/时间后,切换分区(不会是当前分区)
            kafkaProducer.send(ProducerRecord("xiao1", "customProducerCallback,count::$i"), Callback
            { metadata, exception ->
                if (exception == null) {
                    println("主题:${metadata.topic()},分区:${metadata.partition()}")
                }
            })
            //测试分区策略
            Thread.sleep(1)
        }
        //关闭资源
        kafkaProducer.close()
    }
    //回调异步发送+使用分区
    @Test
    fun customProducerCallbackPartitions1() {
        //配置
        val properties = Properties()
        //链接kafka
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //发送数据
        for (i in 0 until 5) {
            //1.没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
            //2.既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器)
            //key可以作为producer数据名,让consumer通过key找到
            kafkaProducer.send(ProducerRecord("xiao1", 1, "", "customProducerCallbackPartitions,count::$i"), Callback
            { metadata, exception ->
                if (exception == null) {
                    println("主题:${metadata.topic()},分区:${metadata.partition()}")
                }
            })
        }
        //关闭资源
        kafkaProducer.close()
    }
    //回调异步发送+自定义分区
    @Test
    fun customProducerCallbackPartitions2() {
        //配置
        val properties = Properties()
        //链接kafka,集群链接使用"183.56.203.157:7050,183.56.203.157:7051"
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //关联自定义分区器
        properties[ProducerConfig.PARTITIONER_CLASS_CONFIG] =
            "com.umh.medicalbookingplatform.b2bapi.config.MyPartitioner"
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //发送数据
        for (i in 0 until 50) {
            //1.没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
            //2.既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器)
            //key可以作为producer数据名,让consumer通过key找到
            kafkaProducer.send(ProducerRecord("xiao1", "felix is strong,count::$i"), Callback
            { metadata, exception ->
                if (exception == null) {
                    println("主题:${metadata.topic()},分区:${metadata.partition()}")
                }
            })
        }
        //关闭资源
        kafkaProducer.close()
    }
    //自定义配置缓冲区、批次、等待时间、压缩
    @Test
    fun customProducerParameters() {
        //配置
        val properties = Properties()
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //缓冲区大小。默认32,64=33554432x2
        properties[ProducerConfig.BUFFER_MEMORY_CONFIG] = 33554432
        //批次大小。默认16k
        properties[ProducerConfig.BATCH_SIZE_CONFIG] = 16384
        //等待时间。默认0
        properties[ProducerConfig.LINGER_MS_CONFIG] = 1
        //压缩.压缩,默认 none,可配置值 gzip、snappy、lz4 和 zstd
        properties[ProducerConfig.COMPRESSION_TYPE_CONFIG] = "snappy"
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        for (i in 0 until 10) {
            //1.没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
            //2.既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器)
            //key可以作为producer数据名,让consumer通过key找到
            kafkaProducer.send(ProducerRecord("xiao1", "customProducerParameters::$i"), Callback
            { metadata, exception ->
                if (exception == null) {
                    println("主题:${metadata.topic()},分区:${metadata.partition()}")
                }
            })
        }
        //关闭资源
        kafkaProducer.close()
    }
    //ack、重试次数配置
    @Test
    fun customProducerAck() {
        //配置
        val properties = Properties()
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //ack
        properties[ProducerConfig.ACKS_CONFIG] = "1"
        //重试次数
        properties[ProducerConfig.RETRIES_CONFIG] = 30
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        for (i in 0 until 10) {
            //1.没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
            //2.既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器)
            //key可以作为producer数据名,让consumer通过key找到
            kafkaProducer.send(ProducerRecord("xiao1", "customProducerAck::$i"), Callback
            { metadata, exception ->
                if (exception == null) {
                    println("主题:${metadata.topic()},分区:${metadata.partition()}")
                }
            })
        }
        //关闭资源
        kafkaProducer.close()
    }
    //事物
    @Test
    fun customProducerTransaction() {
        //配置
        val properties = Properties()
        properties[ProducerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //指定对应key和value的序列化类型(二选一)
//        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = "org.apache.kafka.common.serialization.StringSerializer"
        properties[ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        properties[ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG] = StringSerializer::class.java.name
        //指定事务id,一定要指定!!
        properties[ProducerConfig.TRANSACTIONAL_ID_CONFIG] = UUID.randomUUID().toString()
        //创建kafka生产者对象
        val kafkaProducer = KafkaProducer<String, String>(properties)
        //开启事务
        kafkaProducer.initTransactions()
        kafkaProducer.beginTransaction()
        try {
            for (i in 0 until 10) {
                //1.没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
                //2.既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器)
                //key可以作为producer数据名,让consumer通过key找到
                kafkaProducer.send(ProducerRecord("xiao1", "customProducerTransaction::$i"), Callback
                { metadata, exception ->
                    if (exception == null) {
                        println("主题:${metadata.topic()},分区:${metadata.partition()}")
                    }
                })
            }
//            val test: Int = 1 / 0
            kafkaProducer.commitTransaction()
        } catch (e: Exception) {
            kafkaProducer.abortTransaction()
        } finally {
            //关闭资源
            kafkaProducer.close()
        }
    }
}

消费者

1、一个consumer group中有多个consumer组成,一个 topic有多个partition组成,现在的问题是,到底由哪个consumer来消费哪个 partition的数据。

2、Kafka有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。 可以通过配置参数partition.assignment.strategy,修改分区的分配策略。默认策略是Range + CooperativeSticky。Kafka可以同时使用 多个分区分配策略。

3、每个消费者都会和coordinator保持心跳(默认3s),一旦超时 (session.timeout.ms=45s),该消费者会被移除,并触发再平衡; 或者消费者处理消息的过长(max.poll.interval.ms5分钟),也会触发再 平衡

package com.umh.medicalbookingplatform.api
import com.alibaba.fastjson.parser.ParserConfig
import com.fasterxml.jackson.databind.MapperFeature
import com.umh.medicalbookingplatform.core.audit.SpringSecurityAuditorAware
import com.umh.medicalbookingplatform.core.config.CoreConfiguration
import com.umh.medicalbookingplatform.core.jsonview.JsonViews
import com.umh.medicalbookingplatform.core.properties.ApplicationProperties
import com.umh.medicalbookingplatform.core.utils.ApplicationJsonObjectMapper
import org.jboss.resteasy.client.jaxrs.ResteasyClientBuilder
import org.keycloak.OAuth2Constants
import org.keycloak.admin.client.Keycloak
import org.keycloak.admin.client.KeycloakBuilder
import io.swagger.v3.oas.models.Components
import io.swagger.v3.oas.models.OpenAPI
import org.springframework.beans.factory.annotation.Autowired
import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.runApplication
import org.springframework.boot.web.servlet.ServletComponentScan
import org.springframework.cache.annotation.EnableCaching
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Import
import org.springframework.data.domain.AuditorAware
import org.springframework.data.jpa.repository.config.EnableJpaAuditing
import org.springframework.http.MediaType
import org.springframework.http.converter.HttpMessageConverter
import org.springframework.http.converter.ResourceHttpMessageConverter
import org.springframework.http.converter.json.MappingJackson2HttpMessageConverter
import org.springframework.scheduling.annotation.EnableScheduling
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer
import java.security.Security
import java.util.*
import io.swagger.v3.oas.models.info.Info
import io.swagger.v3.oas.models.info.License
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.clients.consumer.ConsumerRecords
import org.apache.kafka.clients.consumer.KafkaConsumer
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.serialization.StringDeserializer
import org.keycloak.adapters.KeycloakConfigResolver
import org.keycloak.adapters.springboot.KeycloakSpringBootConfigResolver
import org.keycloak.adapters.springboot.KeycloakSpringBootProperties
import org.springframework.http.converter.StringHttpMessageConverter
import java.time.Duration
import java.util.concurrent.TimeUnit
@EnableJpaAuditing
@EnableCaching
@EnableScheduling
@SpringBootApplication
@Import(CoreConfiguration::class)
@ServletComponentScan("com.umh.medicalbookingplatform")
open class ApiApplication : WebMvcConfigurer {
    @Autowired
    private lateinit var appProperties: ApplicationProperties
    @Autowired
    private lateinit var keycloakSpringBootProperties: KeycloakSpringBootProperties
    @Bean
    fun keycloakConfigResolver(): KeycloakConfigResolver {
        return KeycloakSpringBootConfigResolver()
    }
    @Bean
    fun fastJson(){
        ParserConfig.getGlobalInstance().isAutoTypeSupport = true
    }
    @Bean
    fun customConsumer() {
        //配置
        val properties = Properties()
        //连接
        properties[ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //反序列化(注意写法:生产者是序列化,消费者是反序列化)
        properties[ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        properties[ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        //配置消费者组id(就算消费者组只有一个消费者也需要)
        //当消费者组ID相同时,表示他们在同一个消费者组
        //当有三个分区,而消费者组里又有三个消费者时,消费者会各自自动选取一个分区进行消费
        properties[ConsumerConfig.GROUP_ID_CONFIG] = "test"
        //1.创建一个消费者
        val kafkaConsumer = KafkaConsumer<String, String>(properties)
        //2.定义主题 xiao1
        val topics = mutableListOf<String>()
        topics.add("xiao1")
        kafkaConsumer.subscribe(topics)
        //3.消费数据
        while (true) {
            val consumerRecord: ConsumerRecords<String, String> = kafkaConsumer.poll(Duration.ofSeconds(1))
            for (msg in consumerRecord) {
                println("consumer,msg:::$msg")
            }
        }
    }
//    @Bean
    fun customConsumerPartition() {
        //配置
        val properties = Properties()
        //连接
        properties[ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //反序列化(注意写法:生产者是序列化,消费者是反序列化)
        properties[ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        properties[ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        //配置消费者组id(就算消费者组只有一个消费者也需要)
        //当消费者组ID相同时,表示他们在同一个消费者组
        properties[ConsumerConfig.GROUP_ID_CONFIG] = UUID.randomUUID().toString()
        //1.创建一个消费者
        val kafkaConsumer = KafkaConsumer<String, String>(properties)
        //2.定义主题对应的分区
        val topicPartition = mutableListOf<TopicPartition>()
        topicPartition.add(TopicPartition("xiao1", 1))
        kafkaConsumer.assign(topicPartition)
        //3.消费数据
        while (true) {
            val consumerRecord: ConsumerRecords<String, String> = kafkaConsumer.poll(Duration.ofSeconds(1))
            for (msg in consumerRecord) {
                println("msg:::$msg")
            }
        }
    }
    @Bean(name = ["keycloakGlobalCmsApi"])
    fun keycloakGlobalCmsApiInstance(): Keycloak {
        return KeycloakBuilder.builder()
            .serverUrl(appProperties.keycloakAuthServerUrl)//https://keycloak.umhgp.com/auth
            .realm(appProperties.keycloakGlobalCmsRealm)//global_cms
            .clientId(appProperties.keycloakGlobalCmsClient)//global-cms
            .username(appProperties.keycloakApiUsername)//medical-booking-platform-system-uat
            .password(appProperties.keycloakApiPassword)//Kas7aAnC76eGVHv5
            .grantType(OAuth2Constants.PASSWORD)
            .resteasyClient(
                ResteasyClientBuilder()
                    .connectTimeout(10, TimeUnit.SECONDS)
                    .readTimeout(10, TimeUnit.SECONDS)
                    .connectionPoolSize(100).build()
            ).build()
    }
    @Bean(name = ["keycloakGlobalProfileApi"])
    fun keycloakGlobalProfileApiInstance(): Keycloak {
        return KeycloakBuilder.builder()
            .serverUrl(appProperties.keycloakAuthServerUrl)
            .realm(appProperties.keycloakGlobalProfileRealm)
            .clientId(appProperties.keycloakGlobalProfileClient)
            .username(appProperties.keycloakApiUsername)
            .password(appProperties.keycloakApiPassword)
            .grantType(OAuth2Constants.PASSWORD)
            .resteasyClient(
                ResteasyClientBuilder()
                    .connectTimeout(10, TimeUnit.SECONDS)
                    .readTimeout(10, TimeUnit.SECONDS)
                    .connectionPoolSize(100).build()
            ).build()
    }
    @Bean(name = ["keycloakBookingSystemApi"])
    fun keycloakBookingSystemApiInstance(): Keycloak {
        return KeycloakBuilder.builder()
            .serverUrl(appProperties.keycloakAuthServerUrl)
            .realm(appProperties.keycloakBookingSystemRealm)
            .clientId(appProperties.keycloakBookingSystemClient)
            .username(appProperties.keycloakApiUsername)
            .password(appProperties.keycloakApiPassword)
            .grantType(OAuth2Constants.PASSWORD)
            .resteasyClient(
                ResteasyClientBuilder()
                    .connectTimeout(10, TimeUnit.SECONDS)
                    .readTimeout(10, TimeUnit.SECONDS)
                    .connectionPoolSize(100).build()
            ).build()
    }
    @Bean(name = ["keycloakUmhBookingSystemApi"])
    fun keycloakBookingSystemUmhApiInstance(): Keycloak {
        return KeycloakBuilder.builder()
            .serverUrl(appProperties.keycloakAuthServerUrl)
            .realm(appProperties.keycloakUmhBookingSystemRealm)
            .clientId(appProperties.keycloakUmhBookingSystemClient)
            .username(appProperties.keycloakApiUsername)
            .password(appProperties.keycloakApiPassword)
            .grantType(OAuth2Constants.PASSWORD)
            .resteasyClient(
                ResteasyClientBuilder()
                    .connectTimeout(10, TimeUnit.SECONDS)
                    .readTimeout(10, TimeUnit.SECONDS)
                    .connectionPoolSize(100).build()
            ).build()
    }
    @Bean
    internal fun auditorProvider(): AuditorAware<UUID> {
        return SpringSecurityAuditorAware()
    }
    @Bean
    fun customOpenAPI(): OpenAPI? {
        return OpenAPI()
            .components(Components())
            .info(
                Info().title("medical-booking-platform").version("1.5.8")
                    .license(License().name("Apache 2.0").url("http://springdoc.org"))
            )
    }
    override fun configureMessageConverters(converters: MutableList<HttpMessageConverter<*>>) {
//        ActuatorMediaTypes()
        val supportedMediaTypes = ArrayList<MediaType>()
        supportedMediaTypes.add(MediaType.APPLICATION_JSON)
        supportedMediaTypes.add(MediaType.valueOf("application/vnd.spring-boot.actuator.v3+json"))
        supportedMediaTypes.add(MediaType.TEXT_PLAIN)
        val converter = MappingJackson2HttpMessageConverter()
        val objectMapper = ApplicationJsonObjectMapper()
        objectMapper.setConfig(objectMapper.serializationConfig.withView(JsonViews.Admin::class.java))
        objectMapper.configure(MapperFeature.DEFAULT_VIEW_INCLUSION, true)
        converter.objectMapper = objectMapper
        converter.setPrettyPrint(true)
        converter.supportedMediaTypes = supportedMediaTypes
        converters.add(0, StringHttpMessageConverter())
        converters.add(1, converter)
        converters.add(ResourceHttpMessageConverter())
    }
}
fun main(args: Array<String>) {
    Security.setProperty("crypto.policy", "unlimited")
    runApplication<ApiApplication>(*args)
}

range(范围)

Kafka 默认的分区分配策略就是 Range + CooperativeSticky,所以不需要修改策 略。

消费者分区操作:7分区2个消费者时

消费者1:消费分区0123

消费者2:消费分区456


在同一个消费者组,三消费者的情况下,如果其中一个宕机,45秒后会把消费者0需要处理的数据整个搬到消费者1或者消费者2.

结果:Consumer1=01234 或者 Consumer2=01256

随后如果再传输数据,消费者组会根据当前的消费者重新组织分配

Consumer0宕机45秒后再次传数据结果:Consumer1=0123 Consumer2=456

RoundRobin(轮询)

RoundRobin 针对集群中所有Topic而言。 RoundRobin 轮询分区策略,是把所有的 partition 和所有的 consumer 都列出来,然后按照 hashcode 进行排序,最后 通过轮询算法来分配 partition 给到各个消费者。

策略分配的修改

@Bean
    fun customConsumer() {
        //配置
        val properties = Properties()
        //连接
        properties[ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG] = "183.56.218.28:8000"
        //反序列化(注意写法:生产者是序列化,消费者是反序列化)
        properties[ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        properties[ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG] = StringDeserializer::class.java.name
        //配置消费者组id(就算消费者组只有一个消费者也需要)
        //当消费者组ID相同时,表示他们在同一个消费者组
        //当有三个分区,而消费者组里又有三个消费者时,消费者会各自自动选取一个分区进行消费
        properties[ConsumerConfig.GROUP_ID_CONFIG] = "test"
        //设置分区分配策略
        properties[ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG] = "org.apache.kafka.clients.consumer.RoundRobinAssignor"
        //1.创建一个消费者
        val kafkaConsumer = KafkaConsumer<String, String>(properties)
        //2.定义主题 xiao1
        val topics = mutableListOf<String>()
        topics.add("xiao1")
        kafkaConsumer.subscribe(topics)
        //3.消费数据
        while (true) {
            val consumerRecord: ConsumerRecords<String, String> = kafkaConsumer.poll(Duration.ofSeconds(1))
            for (msg in consumerRecord) {
                println("consumer,msg:::$msg")
            }
        }
    }

注意:06为一组给到一个消费者,3为一组给到另外一个消费者。45秒后重新发送数据,consumer2:0246,consumer3:135

Sticky (黏性)

(1)停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。

1 号消费者:消费到 2、5、3 号分区数据。

2 号消费者:消费到 4、6 号分区数据。

0 号消费者的任务会按照粘性规则,尽可能均衡的随机分成 0 和 1 号分区数据,分别 由 1 号消费者或者 2 号消费者消费。

说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需 要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

(2)再次重新发送消息观看结果(45s 以后)。

1 号消费者:消费到 2、3、5 号分区数据。

2 号消费者:消费到 0、1、4、6 号分区数据。

说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。

随机+均匀

宕机后分配的消费者和45秒后分配消费者一样

宕机(3消费者变2消费者):1403,235

45秒后2消费者:1403,235

本文转自 https://blog.csdn.net/weixin_52925162/article/details/126280062?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170100111416800225544545%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=170100111416800225544545&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-8-126280062-null-null.142v96pc_search_result_base9&utm_term=keycloak%20docker-compose&spm=1018.2226.3001.4187,如有侵权,请联系删除。

相关文章
|
7天前
|
人工智能 API 数据安全/隐私保护
使用 Docker 一键免费部署 63.8k 的私人 ChatGPT 网页应用
NextChat 是一个可以在 GitHub 上一键免费部署的私人 ChatGPT 网页应用,支持 GPT3、GPT4 和 Gemini Pro 模型。该项目在 GitHub 上获得了 63.8k 的 star 数。部署简单,只需拉取 Docker 镜像并运行容器,设置 API Key 后即可使用。此外,NextChat 还提供了预设角色的面具功能,方便用户快速创建对话。
57 22
使用 Docker 一键免费部署 63.8k 的私人 ChatGPT 网页应用
|
18天前
|
SQL 关系型数据库 数据库
国产数据实战之docker部署MyWebSQL数据库管理工具
【10月更文挑战第23天】国产数据实战之docker部署MyWebSQL数据库管理工具
58 4
国产数据实战之docker部署MyWebSQL数据库管理工具
|
8天前
|
运维 开发者 Docker
Docker Compose:简化容器化应用的部署与管理
Docker Compose:简化容器化应用的部署与管理
|
8天前
|
Docker 微服务 容器
使用Docker Compose实现微服务架构的快速部署
使用Docker Compose实现微服务架构的快速部署
18 1
|
20天前
|
消息中间件 Linux RocketMQ
在Red Hat Enterprise Linux 9上使用Docker快速安装并部署
通过以上步骤,你可以在Red Hat Enterprise Linux 9上使用Docker快速安装并部署RocketMQ。这种方法不仅简化了安装过程,还提供了一个灵活的环境来管理和扩展消息队列系统。RocketMQ作为一款高性能的分布式消息系统,通过Docker可以实现快速部署和高效管理。
48 2
|
21天前
|
消息中间件 Linux RocketMQ
在Red Hat Enterprise Linux 9上使用Docker快速安装并部署
通过以上步骤,你可以在Red Hat Enterprise Linux 9上使用Docker快速安装并部署RocketMQ。这种方法不仅简化了安装过程,还提供了一个灵活的环境来管理和扩展消息队列系统。RocketMQ作为一款高性能的分布式消息系统,通过Docker可以实现快速部署和高效管理。
31 3
|
24天前
|
关系型数据库 MySQL Linux
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
基于阿里云服务器Linux系统安装Docker完整图文教程(附部署开源项目)
200 3
|
25天前
|
弹性计算 数据库连接 Nacos
阿里云ECS服务器在docker中部署nacos
docker pull nacos 失败,docker部署nacos遇到的问题,nacos数据库连接,nacos端口映射
95 1
|
8天前
|
前端开发 开发者 Docker
深入探索Docker Compose:简化多容器应用的部署
深入探索Docker Compose:简化多容器应用的部署
32 0
|
29天前
|
运维 Kubernetes 监控
掌握Docker容器化技术:构建、部署与管理的高效实践
【10月更文挑战第14天】掌握Docker容器化技术:构建、部署与管理的高效实践
39 0