【面试算法——动态规划 21】不同的子序列(hard)&& 通配符匹配(hard)

简介: 【面试算法——动态规划 21】不同的子序列(hard)&& 通配符匹配(hard)

115. 不同的子序列

给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 + 7 取模。

链接::https://leetcode.cn/problems/distinct-subsequences/

示例 1:

输入:s = “rabbbit”, t = “rabbit”

输出:3

解释:

如下所示, 有 3 种可以从 s 中得到 “rabbit” 的方案。

rabbbit

rabbbit

rabbbit

示例 2:

输入:s = “babgbag”, t = “bag”

输出:5

解释:

如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。

babgbag

babgbag

babgbag

babgbag

babgbag

1.状态表示*

dp[i][j] 表⽰:在字符串 s 的 [0, j] 区间内的所有⼦序列中,有多少个 t 字符串 [0,i] 区间内的⼦串.

2.状态转移方程

分析状态转移⽅程的经验就是根据「最后⼀个位置」的状况,分情况讨论。

对于 dp[i][j] ,我们可以根据 s1[i] 与 s2[j] 的字符分情况讨论:

  1. . 两个字符相同, s1[i] = s2[j] :那么最⻓公共⼦序列就在 s1 的 [0, i - 1] 以 及 s2 的 [0, j - 1] 区间上找到⼀个最⻓的,然后再加上 s1[i] 即可。因此 dp[i][j] = dp[i - 1][j - 1] + 1 ;

ii. 两个字符不相同, s1[i] != s2[j] :那么最⻓公共⼦序列⼀定不会同时以 s1[i] 和 s2[j] 结尾。那么我们找最⻓公共⼦序列时,有下⾯三种策略:

去 s1 的 [0, i - 1] 以及 s2 的 [0, j] 区间内找:此时最⼤⻓度为 dp[i - 1][j] ;

去 s1 的 [0, i] 以及 s2 的 [0, j - 1] 区间内找:此时最⼤⻓度为 dp[i ] [j - 1] ;

去s1 的 [0, i - 1] 以及 s2 的 [0, j - 1] 区间内找:此时最⼤⻓度为 dp[i - 1][j - 1]

我们要三者的最⼤值即可。但是我们细细观察会发现,第三种包含在第⼀种和第⼆种情况⾥⾯,但是我们求的是最⼤值,并不影响最终结果。因此只需求前两种情况下的最⼤值即可。

综上,状态转移⽅程为:

if(s1[i] == s2[j]) dp[i][j] = dp[i - 1][j - 1] + 1 ;
if(s1[i] != s2[j]) dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

3. 初始化

a. 「空串」是有研究意义的,因此我们将原始 dp 表的规模多加上⼀⾏和⼀列,表⽰空串。

b. 引⼊空串后,⼤⼤的⽅便我们的初始化。

c. 但也要注意「下标的映射关系」,以及⾥⾯的值要「保证后续填表是正确的」。

当 s1 为空时,没有⻓度,同理 s2 也是。因此第⼀⾏和第⼀列⾥⾯的值初始化为 0 即可保证后续填表是正确的.

4. 填表顺序

根据「状态转移⽅程」得:从上往下填写每⼀⾏,每⼀⾏从左往右

5. 返回值

返回 dp[m][n]

代码:

  int numDistinct(string s, string t) {
       int m=t.size();
      int n=s.size();
      //dp[i][j]表示的是 以0~j范围内的所有s子序列中,有多少0~i的t字串
      vector<vector<double>> dp(m+1,vector<double>(n+1));
      for(int i=0;i<=n;i++) dp[0][i]=1; 
      for(int i=1;i<=m;i++)
      {
          for(int j=1;j<=n;j++)
          {
              dp[i][j]+=dp[i][j-1];
              if(t[i-1]==s[j-1])
              {
                  dp[i][j]+=dp[i-1][j-1];
              }
          }
      }
      return dp[m][n];
    }

0e398c0229224adba62960673928a891.png

44. 通配符匹配

链接:https://leetcode.cn/problems/wildcard-matching/description/

给你一个输入字符串 (s) 和一个字符模式 § ,请你实现一个支持 ‘?’ 和 ‘’ 匹配规则的通配符匹配:

‘?’ 可以匹配任何单个字符。
'’ 可以匹配任意字符序列(包括空字符序列)。

判定匹配成功的充要条件是:字符模式必须能够 完全匹配 输入字符串(而不是部分匹配)。

示例 1:

输入:s = “aa”, p = “a”

输出:false

解释:“a” 无法匹配 “aa” 整个字符串。

示例 2:

输入:s = “aa”, p = ""
输出:true
解释:'’ 可以匹配任意字符串。

示例 3:

输入:s = “cb”, p = “?a”

输出:false

解释:‘?’ 可以匹配 ‘c’, 但第二个 ‘a’ 无法匹配 ‘b’。

1.状态表示*

dp[i][j] 表⽰: p 字符串 [0, j] 区间内的⼦串能否匹配字符串 s 的 [0, i] 区间内的⼦串

2.状态转移方程

⽼规矩,根据最后⼀个位置的元素,结合题⽬要求,分情况讨论:

  1. i. 当 s[i] == p[j] 或 p[j] == ‘?’ 的时候,此时两个字符串匹配上了当前的⼀个字符,只能从 dp[i -
    1][j - 1] 中看当前字符前⾯的两个⼦串是否匹配。只能继承上个状态中的匹配结果, dp[i][j] = dp[i][j - 1] ;

ii. 当 p[j] == ‘*’ 的时候,此时匹配策略有两种选择:

• ⼀种选择是: * 匹配空字符串,此时相当于它匹配了⼀个寂寞,直接继承状态 dp[i] [j - 1] ,此时 dp[i][j] = dp[i][j -1] ;

• 另⼀种选择是: * 向前匹配 1 ~ n 个字符,直⾄匹配上整个 s1 串。此时相当于从 dp[k][j - 1] (0 <= k <= i) 中所有匹配情况中,选择性继承可以成功的情况。此时 dp[i][j] = dp[k][j - 1] (0 <= k <= i) ;

  1. iii. 当 p[j] 不是特殊字符,且不与 s[i] 相等时,⽆法匹配。 三种情况加起来,就是所有可能的匹配结果。

综上所述,状态转移⽅程为:

▪ 当 s[i] == p[j] 或 p[j] == ‘?’ 时: dp[i][j] = dp[i][j - 1] ;

▪ 当 p[j] == ‘*’ 时,有多种情况需要讨论: dp[i][j] = dp[k][j - 1] (0 <=k <= i) ;

重难点:

优化:当我们发现,计算⼀个状态的时候,需要⼀个循环才能搞定的时候,我们要想到去优化。优

化的⽅向就是⽤⼀个或者两个状态来表⽰这⼀堆的状态。通常就是把它写下来,然后⽤数学的⽅式

做⼀下等价替换:

当 p[j] == ‘*’ 时,状态转移⽅程为: dp[i][j] = dp[i][j - 1] || dp[i - 1][j - 1] || dp[i - 2][j - 1] …

我们发现 i 是有规律的减⼩的,因此我们去看看 dp[i - 1][j] :

dp[i - 1][j] = dp[i - 1][j - 1] || dp[i - 2][j - 1] || dp[i - 3][j - 1] …

我们惊奇的发现, dp[i][j] 的状态转移⽅程⾥⾯除了第⼀项以外,其余的都可以⽤ dp[i -

1][j] 替代。因此,我们优化我们的状态转移⽅程为: dp[i][j] = dp[i - 1][j] ||dp[i][j - 1]

3. 初始化

由于 dp 数组的值设置为是否匹配,为了不与答案值混淆,我们需要将整个数组初始化为false 。

由于需要⽤到前⼀⾏和前⼀列的状态,我们初始化第⼀⾏、第⼀列即可。

◦ dp[0][0] 表⽰两个空串能否匹配,答案是显然的,初始化为 true 。

  • ◦ 第⼀⾏表⽰ s 是⼀个空串, p 串和空串只有⼀种匹配可能,即 p 串表⽰为 “**" ,此时
    也相当于空串匹配上空串。所以,我们可以遍历 p 串,把所有前导为 "” 的 p ⼦串和空串 的 dp 值设为 true 。
  • ◦ 第⼀列表⽰ p 是⼀个空串,不可能匹配上 s 串,跟随数组初始化即可。

4. 填表顺序

根据「状态转移⽅程」得:从上往下填写每⼀⾏,每⼀⾏从左往右

5. 返回值

返回 dp[m][n]

代码:

 bool isMatch(string s, string p) {
  int n=s.size();
        int m=p.size();
        vector<vector<bool>> dp(n+1,vector<bool>(m+1));
        //初始化
        dp[0][0]=1;
        for(int i=1;i<=m;i++)
        {
            if(p[i-1]=='*') dp[0][i]=1;
            else break;
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(p[j-1]=='?'||s[i-1]==p[j-1])
                {
                    dp[i][j]=dp[i-1][j-1];
                }
                if(p[j-1]=='*')
                {
                    // for(int z=0;z<=i;z++)
                    // {
                    //     if(dp[z][j-1])
                    //     {
                    //         dp[i][j]=dp[z][j-1];
                    //         break;
                    //     }
                    // }
                    //优化
                    dp[i][j] = dp[i - 1][j] || dp[i][j - 1];
                }
            }
        }
        return dp[n][m];
    }

17d38e0751194cd7840e824f459265ab.png



相关文章
|
6天前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
12天前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
11天前
|
机器学习/深度学习 人工智能 资源调度
【博士每天一篇文献-算法】连续学习算法之HAT: Overcoming catastrophic forgetting with hard attention to the task
本文介绍了一种名为Hard Attention to the Task (HAT)的连续学习算法,通过学习几乎二值的注意力向量来克服灾难性遗忘问题,同时不影响当前任务的学习,并通过实验验证了其在减少遗忘方面的有效性。
28 12
|
5天前
|
算法
聊聊一个面试中经常出现的算法题:组合运算及其实际应用例子
聊聊一个面试中经常出现的算法题:组合运算及其实际应用例子
|
5天前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
5天前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
14天前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
29 4
|
12天前
|
算法
突击面试:解密面试官的算法题集合
突击面试:解密面试官的算法题集合
|
14天前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
26 2
|
14天前
|
机器学习/深度学习 算法 数据挖掘

热门文章

最新文章