【面试算法——动态规划 20】最长公共子序列&& 不相交的线

简介: 【面试算法——动态规划 20】最长公共子序列&& 不相交的线

1143. 最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入:text1 = “abcde”, text2 = “ace”

输出:3

解释:最长公共子序列是 “ace” ,它的长度为 3 。

示例 2:

输入:text1 = “abc”, text2 = “abc”

输出:3

解释:最长公共子序列是 “abc” ,它的长度为 3 。

示例 3:

输入:text1 = “abc”, text2 = “def”

输出:0

解释:两个字符串没有公共子序列,返回 0 。

1.状态表示*

状态表⽰:

对于两个数组的动态规划,我们的定义状态表⽰的经验就是:

i. 选取第⼀个数组 [0, i] 区间以及第⼆个数组 [0, j] 区间作为研究对象;

ii. 结合题⽬要求,定义状态表⽰。

在这道题中,我们根据定义状态表⽰为:

dp[i][j] 表⽰: s1 的 [0, i] 区间以及 s2 的 [0, j] 区间内的所有的⼦序列中,最
⻓公共⼦序列的⻓度

2.状态转移方程

分析状态转移⽅程的经验就是根据「最后⼀个位置」的状况,分情况讨论。

对于 dp[i][j] ,我们可以根据 s1[i] 与 s2[j] 的字符分情况讨论:

  1. . 两个字符相同, s1[i] = s2[j] :那么最⻓公共⼦序列就在 s1 的 [0, i - 1] 以 及 s2 的 [0, j - 1] 区间上找到⼀个最⻓的,然后再加上 s1[i] 即可。因此 dp[i][j] = dp[i - 1][j - 1] + 1 ;

ii. 两个字符不相同, s1[i] != s2[j] :那么最⻓公共⼦序列⼀定不会同时以 s1[i] 和 s2[j] 结尾。那么我们找最⻓公共⼦序列时,有下⾯三种策略:

去 s1 的 [0, i - 1] 以及 s2 的 [0, j] 区间内找:此时最⼤⻓度为 dp[i - 1][j] ;

去 s1 的 [0, i] 以及 s2 的 [0, j - 1] 区间内找:此时最⼤⻓度为 dp[i ] [j - 1] ;

去s1 的 [0, i - 1] 以及 s2 的 [0, j - 1] 区间内找:此时最⼤⻓度为 dp[i - 1][j - 1]

我们要三者的最⼤值即可。但是我们细细观察会发现,第三种包含在第⼀种和第⼆种情况⾥⾯,但是我们求的是最⼤值,并不影响最终结果。因此只需求前两种情况下的最⼤值即可。

综上,状态转移⽅程为:

if(s1[i] == s2[j]) dp[i][j] = dp[i - 1][j - 1] + 1 ;
if(s1[i] != s2[j]) dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

3. 初始化

a. 「空串」是有研究意义的,因此我们将原始 dp 表的规模多加上⼀⾏和⼀列,表⽰空串。

b. 引⼊空串后,⼤⼤的⽅便我们的初始化。

c. 但也要注意「下标的映射关系」,以及⾥⾯的值要「保证后续填表是正确的」。

当 s1 为空时,没有⻓度,同理 s2 也是。因此第⼀⾏和第⼀列⾥⾯的值初始化为 0 即可保证后续填表是正确的.

4. 填表顺序

根据「状态转移⽅程」得:从上往下填写每⼀⾏,每⼀⾏从左往右

5. 返回值

返回 dp[m][n]

代码:

 int longestCommonSubsequence(string text1, string text2) {
        int n=text1.size();
        int m=text2.size();
        vector<vector<int>> dp(n+1,vector<int>(m+1));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(text1[i-1]==text2[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                {
                    dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
                }
            }
        }
        return dp[n][m];
    }

aba4354cf8b9447282896848c229834f.png

1035. 不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足满足:

nums1[i] == nums2[j]

且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。


6837911b6e0a44d2997e40b82d0831fc.png

输入:nums1 = [1,4,2], nums2 = [1,2,4]

输出:2

解释:可以画出两条不交叉的线,如上图所示。

但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

示例 2:

输入:nums1 = [2,5,1,2,5], nums2 = [10,5,2,1,5,2]

输出:3

示例 3:

输入:nums1 = [1,3,7,1,7,5], nums2 = [1,9,2,5,1]

输出:2

解法思路:

我们仔细分析一下题目,求不相交的两条线,也就是求的是两个数组中的最长的公共子序列,

详细题解已经写在上一题,所以不再赘述。

代码

  int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {
 int n=nums1.size();
        int m=nums2.size();
        vector<vector<int>> dp(n+1,vector<int>(m+1));
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                if(nums1[i-1]==nums2[j-1])
                {
                    dp[i][j]=dp[i-1][j-1]+1;
                }
                else
                {
                    dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
                }
            }
        }
        return dp[n][m];
    }

591c827a9e4a4781ba474cf72c8d3f27.png


相关文章
|
2天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
15 2
|
24天前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩分享分库分表的基因算法设计,涵盖分片键选择、水平拆分策略及基因法优化查询效率等内容,助力面试者应对大厂技术面试,提高架构设计能力。
美团面试:百亿级分片,如何设计基因算法?
|
27天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
56 2
动态规划算法学习三:0-1背包问题
|
30天前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
30 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
18天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
24天前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩在读者群中分享了关于分库分表的基因算法设计,旨在帮助大家应对一线互联网企业的面试题。文章详细介绍了分库分表的背景、分片键的设计目标和建议,以及基因法的具体应用和优缺点。通过系统化的梳理,帮助读者提升架构、设计和开发水平,顺利通过面试。
美团面试:百亿级分片,如何设计基因算法?
|
27天前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
59 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
27天前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
112 0
动态规划算法学习二:最长公共子序列
|
29天前
|
算法
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
17 1
|
1月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
62 2
下一篇
无影云桌面