MLX vs MPS vs CUDA:苹果新机器学习框架的基准测试

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 如果你是一个Mac用户和一个深度学习爱好者,你可能希望在某些时候Mac可以处理一些重型模型。苹果刚刚发布了MLX,一个在苹果芯片上高效运行机器学习模型的框架。

最近在PyTorch 1.12中引入MPS后端已经是一个大胆的步骤,但随着MLX的宣布,苹果还想在开源深度学习方面有更大的发展。

在本文中,我们将对这些新方法进行测试,在三种不同的Apple Silicon芯片和两个支持cuda的gpu上和传统CPU后端进行基准测试。

这里把基准测试集中在图卷积网络(GCN)模型上。这个模型主要由线性层组成,所以对于其他的模型也应该得到类似的结果。

创造环境

要为MLX构建环境,我们必须指定是使用i386还是arm架构。使用conda,可以使用:

 CONDA_SUBDIR=osx-arm64 conda create -n mlx python=3.10 numpy pytorch scipy requests -c conda-forge
 conda activate mlx

如果检查你的env是否实际使用了arm,下面命令的输出应该是arm,而不是i386(因为我们用的Apple Silicon):

 python -c "import platform; print(platform.processor())"

然后就是使用pip安装MLX:

 pip install mlx

GCN模型

GCN模型是图神经网络(GNN)的一种,它使用邻接矩阵(表示图结构)和节点特征。它通过收集邻近节点的信息来计算节点嵌入。每个节点获得其邻居特征的平均值。这种平均是通过将节点特征与标准化邻接矩阵相乘来完成的,并根据节点度进行调整。为了学习这个过程,特征首先通过线性层投射到嵌入空间中。

我们将使用MLX实现一个GCN层和一个GCN模型:

 import mlx.nn as nn

 class GCNLayer(nn.Module):
     def __init__(self, in_features, out_features, bias=True):
         super(GCNLayer, self).__init__()
         self.linear = nn.Linear(in_features, out_features, bias)

     def __call__(self, x, adj):
         x = self.linear(x)
         return adj @ x

 class GCN(nn.Module):
     def __init__(self, x_dim, h_dim, out_dim, nb_layers=2, dropout=0.5, bias=True):
         super(GCN, self).__init__()

         layer_sizes = [x_dim] + [h_dim] * nb_layers + [out_dim]
         self.gcn_layers = [
             GCNLayer(in_dim, out_dim, bias)
             for in_dim, out_dim in zip(layer_sizes[:-1], layer_sizes[1:])
         ]
         self.dropout = nn.Dropout(p=dropout)

     def __call__(self, x, adj):
         for layer in self.gcn_layers[:-1]:
             x = nn.relu(layer(x, adj))
             x = self.dropout(x)

         x = self.gcn_layers[-1](x, adj)
         return x

可以看到,mlx的模型开发方式与tf2基本一样,都是调用

__call__

进行前向传播,其实torch也一样,只不过它自定义了一个forward函数。

下面就是训练

 gcn = GCN(
     x_dim=x.shape[-1],
     h_dim=args.hidden_dim,
     out_dim=args.nb_classes,
     nb_layers=args.nb_layers,
     dropout=args.dropout,
     bias=args.bias,
 )
 mx.eval(gcn.parameters())

 optimizer = optim.Adam(learning_rate=args.lr)
 loss_and_grad_fn = nn.value_and_grad(gcn, forward_fn)

 # Training loop
 for epoch in range(args.epochs):

     # Loss
     (loss, y_hat), grads = loss_and_grad_fn(
         gcn, x, adj, y, train_mask, args.weight_decay
     )
     optimizer.update(gcn, grads)
     mx.eval(gcn.parameters(), optimizer.state)

     # Validation
     val_loss = loss_fn(y_hat[val_mask], y[val_mask])
     val_acc = eval_fn(y_hat[val_mask], y[val_mask])

在MLX中,计算是惰性的,这意味着eval()通常用于在更新后实际计算新的模型参数。而另一个关键函数是nn.value_and_grad(),它生成一个计算参数损失的函数。第一个参数是保存当前参数的模型,第二个参数是用于前向传递和损失计算的可调用函数。它返回的函数接受与forward函数相同的参数(在本例中为forward_fn)。我们可以这样定义这个函数:

 def forward_fn(gcn, x, adj, y, train_mask, weight_decay):
     y_hat = gcn(x, adj)
     loss = loss_fn(y_hat[train_mask], y[train_mask], weight_decay, gcn.parameters())
     return loss, y_hat

它仅仅包括计算前向传递和计算损失。Loss_fn()和eval_fn()定义如下:

 def loss_fn(y_hat, y, weight_decay=0.0, parameters=None):
     l = mx.mean(nn.losses.cross_entropy(y_hat, y))

     if weight_decay != 0.0:
         assert parameters != None, "Model parameters missing for L2 reg."

         l2_reg = sum(mx.sum(p[1] ** 2) for p in tree_flatten(parameters)).sqrt()
         return l + weight_decay * l2_reg

     return l

 def eval_fn(x, y):
     return mx.mean(mx.argmax(x, axis=1) == y)

损失函数是计算预测和标签之间的交叉熵,并包括L2正则化。由于L2正则化还不是内置特性,需要手动实现。

本文的完整代码:https://github.com/TristanBilot/mlx-GCN

可以看到除了一些细节函数调用的差别,基本的训练流程与pytorch和tf都很类似,但是这里的一个很好的事情是消除了显式地将对象分配给特定设备的需要,就像我们在PyTorch中经常使用.cuda()和.to(device)那样。这是因为苹果硅芯片的统一内存架构,所有变量共存于同一空间,也就是说消除了CPU和GPU之间缓慢的数据传输,这样也可以保证不会再出现与设备不匹配相关的烦人的运行时错误。

基准测试

我们将使用MLX与MPS, CPU和GPU设备进行比较。我们的测试平台是一个2层GCN模型,应用于Cora数据集,其中包括2708个节点和5429条边。

对于MLX, MPS和CPU测试,我们对M1 Pro, M2 Ultra和M3 Max进行基准测试。在两款NVIDIA V100 PCIe和V100 NVLINK上进行测试

MPS:比M1 Pro的CPU快2倍以上,在其他两个芯片上,与CPU相比有30-50%的改进。

MLX:比M1 Pro上的MPS快2.34倍。与MPS相比,M2 Ultra的性能提高了24%。在M3 Pro上MPS和MLX之间没有真正的改进。

CUDA V100 PCIe & NVLINK:只有23%和34%的速度比M3 Max与MLX,这里的原因可能是因为我们的模型比较小,所以发挥不出V100和NVLINK的优势(NVLINK主要GPU之间的数据传输大的情况下会有提高)。这也说明了苹果的统一内存架构的确可以消除CPU和GPU之间缓慢的数据传输。

总结

与CPU和MPS相比,MLX可以说是非常大的进步,在小数据量的情况下它甚至接近特斯拉V100的性能。也就是说我们可以使用MLX跑一些不是那么大的模型,比如一些表格数据。

从上面的基准测试也可以看到,现在可以利用苹果芯片的全部力量在本地运行深度学习模型(我一直认为MPS还没发挥苹果的优势,这回MPS已经证明了这一点)。

MLX刚刚发布就已经取得了惊人的影响力,并展示了巨大的潜力。相信未来几年开源社区的进一步增强,可以期待在不久的将来更强大的苹果芯片,将MLX的性能提升到一个全新的水平。

另外也说明了MPS(虽然也发布不久)还是有巨大的发展空间的,毕竟切换框架是一件很麻烦的事情,如果MPS能达到MLX 80%或者90%的速度,我想不会有人去换框架的。

最后说到框架,现在已经有了Pytorch,TF,JAX,现在又多了一个MLX。各种设备、各种后端包括:TPU(pytorch使用的XLA),CUDA,ROCM,现在又多了一个MPS。

https://avoid.overfit.cn/post/eb87d12f29eb4665adb43ad59fd3d64f

目录
相关文章
|
4天前
|
XML Java 测试技术
Spring5入门到实战------17、Spring5新功能 --Nullable注解和函数式注册对象。整合JUnit5单元测试框架
这篇文章介绍了Spring5框架的三个新特性:支持@Nullable注解以明确方法返回、参数和属性值可以为空;引入函数式风格的GenericApplicationContext进行对象注册和管理;以及如何整合JUnit5进行单元测试,同时讨论了JUnit4与JUnit5的整合方法,并提出了关于配置文件加载的疑问。
Spring5入门到实战------17、Spring5新功能 --Nullable注解和函数式注册对象。整合JUnit5单元测试框架
|
12天前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
|
4天前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
14 1
|
8天前
|
IDE 测试技术 持续交付
Python自动化测试与单元测试框架:提升代码质量与效率
随着软件行业的发展,代码质量和效率变得至关重要。自动化测试与单元测试是保证质量、提升效率的关键。Python凭借其简洁强大及丰富的测试框架(如Selenium、Appium、pytest和unittest等),成为了实施自动化测试的理想选择。本文将深入探讨这些框架的应用,帮助读者掌握编写高质量测试用例的方法,并通过持续集成等策略提升开发流程的效率与质量。
27 4
|
8天前
|
Web App开发 IDE 测试技术
天呐!当揭开 Selenium 自动化测试框架的神秘面纱,设计与实现令人瞠目!
【8月更文挑战第12天】Selenium 是一强大自动化测试框架,用于Web应用测试。它含WebDriver、IDE和Grid等工具,支持Chrome、Firefox等浏览器。可通过编程模拟用户交互验证应用功能。例如使用Python结合Selenium WebDriver编写自动化测试脚本,实现打开网页、操作元素及断言等功能。还可结合测试框架和Selenium Grid提升测试效率和并行执行能力。
20 1
|
12天前
|
机器学习/深度学习 自然语言处理 算法
利用机器学习算法进行自动化测试
利用机器学习算法进行自动化测试
|
12天前
|
机器学习/深度学习 人工智能 算法
探索自动化测试的未来:AI与机器学习的融合
在软件测试领域,自动化一直是提高效率和准确性的关键。随着人工智能(AI)和机器学习(ML)技术的飞速发展,它们正在逐步改变自动化测试的面貌。本文将探讨AI和ML如何增强自动化测试的能力,提高其智能性、预测性和适应性,并分析这些技术为测试实践带来的潜在变化和挑战。
|
14天前
|
人工智能 测试技术 持续交付
探索自动化测试框架的演进与实践
【8月更文挑战第6天】 随着软件行业的快速发展,自动化测试已经成为保障软件质量的关键手段。本文将深入分析自动化测试框架的发展脉络,从早期的线性脚本到现代的模块化、数据驱动和关键字驱动的框架,再到最新的基于AI的智能测试工具。文章还将探讨如何在实际工作中有效实施这些框架,以及在面对新技术时如何保持测试策略的灵活性和前瞻性。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
探索自动化测试的未来:AI与机器学习的融合
在软件测试领域,自动化测试一直是提高效率和质量的关键工具。然而,随着技术的发展,尤其是人工智能(AI)和机器学习(ML)的兴起,我们看到了自动化测试的新机遇和挑战。本文将探讨AI和ML如何改变自动化测试的面貌,从智能测试脚本的生成到预测性分析的应用,以及这些技术如何帮助测试人员更有效地识别和解决问题。我们将通过具体案例和最新研究成果,深入理解这一趋势对软件测试实践的影响。
|
14天前
|
机器学习/深度学习 数据可视化 数据处理
Python vs R:机器学习项目中的实用性与生态系统比较
【8月更文第6天】Python 和 R 是数据科学和机器学习领域中最受欢迎的两种编程语言。两者都有各自的优点和适用场景,选择哪种语言取决于项目的具体需求、团队的技能水平以及个人偏好。本文将从实用性和生态系统两个方面进行比较,并提供代码示例来展示这两种语言在典型机器学习任务中的应用。
38 1