MLX vs MPS vs CUDA:苹果新机器学习框架的基准测试

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 如果你是一个Mac用户和一个深度学习爱好者,你可能希望在某些时候Mac可以处理一些重型模型。苹果刚刚发布了MLX,一个在苹果芯片上高效运行机器学习模型的框架。

最近在PyTorch 1.12中引入MPS后端已经是一个大胆的步骤,但随着MLX的宣布,苹果还想在开源深度学习方面有更大的发展。

在本文中,我们将对这些新方法进行测试,在三种不同的Apple Silicon芯片和两个支持cuda的gpu上和传统CPU后端进行基准测试。

这里把基准测试集中在图卷积网络(GCN)模型上。这个模型主要由线性层组成,所以对于其他的模型也应该得到类似的结果。

创造环境

要为MLX构建环境,我们必须指定是使用i386还是arm架构。使用conda,可以使用:

 CONDA_SUBDIR=osx-arm64 conda create -n mlx python=3.10 numpy pytorch scipy requests -c conda-forge
 conda activate mlx

如果检查你的env是否实际使用了arm,下面命令的输出应该是arm,而不是i386(因为我们用的Apple Silicon):

 python -c "import platform; print(platform.processor())"

然后就是使用pip安装MLX:

 pip install mlx

GCN模型

GCN模型是图神经网络(GNN)的一种,它使用邻接矩阵(表示图结构)和节点特征。它通过收集邻近节点的信息来计算节点嵌入。每个节点获得其邻居特征的平均值。这种平均是通过将节点特征与标准化邻接矩阵相乘来完成的,并根据节点度进行调整。为了学习这个过程,特征首先通过线性层投射到嵌入空间中。

我们将使用MLX实现一个GCN层和一个GCN模型:

 import mlx.nn as nn

 class GCNLayer(nn.Module):
     def __init__(self, in_features, out_features, bias=True):
         super(GCNLayer, self).__init__()
         self.linear = nn.Linear(in_features, out_features, bias)

     def __call__(self, x, adj):
         x = self.linear(x)
         return adj @ x

 class GCN(nn.Module):
     def __init__(self, x_dim, h_dim, out_dim, nb_layers=2, dropout=0.5, bias=True):
         super(GCN, self).__init__()

         layer_sizes = [x_dim] + [h_dim] * nb_layers + [out_dim]
         self.gcn_layers = [
             GCNLayer(in_dim, out_dim, bias)
             for in_dim, out_dim in zip(layer_sizes[:-1], layer_sizes[1:])
         ]
         self.dropout = nn.Dropout(p=dropout)

     def __call__(self, x, adj):
         for layer in self.gcn_layers[:-1]:
             x = nn.relu(layer(x, adj))
             x = self.dropout(x)

         x = self.gcn_layers[-1](x, adj)
         return x

可以看到,mlx的模型开发方式与tf2基本一样,都是调用

__call__

进行前向传播,其实torch也一样,只不过它自定义了一个forward函数。

下面就是训练

 gcn = GCN(
     x_dim=x.shape[-1],
     h_dim=args.hidden_dim,
     out_dim=args.nb_classes,
     nb_layers=args.nb_layers,
     dropout=args.dropout,
     bias=args.bias,
 )
 mx.eval(gcn.parameters())

 optimizer = optim.Adam(learning_rate=args.lr)
 loss_and_grad_fn = nn.value_and_grad(gcn, forward_fn)

 # Training loop
 for epoch in range(args.epochs):

     # Loss
     (loss, y_hat), grads = loss_and_grad_fn(
         gcn, x, adj, y, train_mask, args.weight_decay
     )
     optimizer.update(gcn, grads)
     mx.eval(gcn.parameters(), optimizer.state)

     # Validation
     val_loss = loss_fn(y_hat[val_mask], y[val_mask])
     val_acc = eval_fn(y_hat[val_mask], y[val_mask])

在MLX中,计算是惰性的,这意味着eval()通常用于在更新后实际计算新的模型参数。而另一个关键函数是nn.value_and_grad(),它生成一个计算参数损失的函数。第一个参数是保存当前参数的模型,第二个参数是用于前向传递和损失计算的可调用函数。它返回的函数接受与forward函数相同的参数(在本例中为forward_fn)。我们可以这样定义这个函数:

 def forward_fn(gcn, x, adj, y, train_mask, weight_decay):
     y_hat = gcn(x, adj)
     loss = loss_fn(y_hat[train_mask], y[train_mask], weight_decay, gcn.parameters())
     return loss, y_hat

它仅仅包括计算前向传递和计算损失。Loss_fn()和eval_fn()定义如下:

 def loss_fn(y_hat, y, weight_decay=0.0, parameters=None):
     l = mx.mean(nn.losses.cross_entropy(y_hat, y))

     if weight_decay != 0.0:
         assert parameters != None, "Model parameters missing for L2 reg."

         l2_reg = sum(mx.sum(p[1] ** 2) for p in tree_flatten(parameters)).sqrt()
         return l + weight_decay * l2_reg

     return l

 def eval_fn(x, y):
     return mx.mean(mx.argmax(x, axis=1) == y)

损失函数是计算预测和标签之间的交叉熵,并包括L2正则化。由于L2正则化还不是内置特性,需要手动实现。

本文的完整代码:https://github.com/TristanBilot/mlx-GCN

可以看到除了一些细节函数调用的差别,基本的训练流程与pytorch和tf都很类似,但是这里的一个很好的事情是消除了显式地将对象分配给特定设备的需要,就像我们在PyTorch中经常使用.cuda()和.to(device)那样。这是因为苹果硅芯片的统一内存架构,所有变量共存于同一空间,也就是说消除了CPU和GPU之间缓慢的数据传输,这样也可以保证不会再出现与设备不匹配相关的烦人的运行时错误。

基准测试

我们将使用MLX与MPS, CPU和GPU设备进行比较。我们的测试平台是一个2层GCN模型,应用于Cora数据集,其中包括2708个节点和5429条边。

对于MLX, MPS和CPU测试,我们对M1 Pro, M2 Ultra和M3 Max进行基准测试。在两款NVIDIA V100 PCIe和V100 NVLINK上进行测试

MPS:比M1 Pro的CPU快2倍以上,在其他两个芯片上,与CPU相比有30-50%的改进。

MLX:比M1 Pro上的MPS快2.34倍。与MPS相比,M2 Ultra的性能提高了24%。在M3 Pro上MPS和MLX之间没有真正的改进。

CUDA V100 PCIe & NVLINK:只有23%和34%的速度比M3 Max与MLX,这里的原因可能是因为我们的模型比较小,所以发挥不出V100和NVLINK的优势(NVLINK主要GPU之间的数据传输大的情况下会有提高)。这也说明了苹果的统一内存架构的确可以消除CPU和GPU之间缓慢的数据传输。

总结

与CPU和MPS相比,MLX可以说是非常大的进步,在小数据量的情况下它甚至接近特斯拉V100的性能。也就是说我们可以使用MLX跑一些不是那么大的模型,比如一些表格数据。

从上面的基准测试也可以看到,现在可以利用苹果芯片的全部力量在本地运行深度学习模型(我一直认为MPS还没发挥苹果的优势,这回MPS已经证明了这一点)。

MLX刚刚发布就已经取得了惊人的影响力,并展示了巨大的潜力。相信未来几年开源社区的进一步增强,可以期待在不久的将来更强大的苹果芯片,将MLX的性能提升到一个全新的水平。

另外也说明了MPS(虽然也发布不久)还是有巨大的发展空间的,毕竟切换框架是一件很麻烦的事情,如果MPS能达到MLX 80%或者90%的速度,我想不会有人去换框架的。

最后说到框架,现在已经有了Pytorch,TF,JAX,现在又多了一个MLX。各种设备、各种后端包括:TPU(pytorch使用的XLA),CUDA,ROCM,现在又多了一个MPS。

https://avoid.overfit.cn/post/eb87d12f29eb4665adb43ad59fd3d64f

目录
相关文章
|
4天前
|
设计模式 前端开发 JavaScript
自动化测试框架设计原则与最佳实践####
本文深入探讨了构建高效、可维护的自动化测试框架的核心原则与策略,旨在为软件测试工程师提供一套系统性的方法指南。通过分析常见误区,结合行业案例,阐述了如何根据项目特性定制自动化策略,优化测试流程,提升测试覆盖率与执行效率。 ####
23 6
|
4天前
|
人工智能 前端开发 测试技术
探索软件测试中的自动化框架选择与优化策略####
本文深入剖析了当前主流的自动化测试框架,通过对比分析各自的优势、局限性及适用场景,为读者提供了一套系统性的选择与优化指南。文章首先概述了自动化测试的重要性及其在软件开发生命周期中的位置,接着逐一探讨了Selenium、Appium、Cypress等热门框架的特点,并通过实际案例展示了如何根据项目需求灵活选用与配置框架,以提升测试效率和质量。最后,文章还分享了若干最佳实践和未来趋势预测,旨在帮助测试工程师更好地应对复杂多变的测试环境。 ####
19 4
|
9天前
|
机器学习/深度学习 前端开发 测试技术
探索软件测试中的自动化测试框架选择与优化策略####
本文深入探讨了在当前软件开发生命周期中,自动化测试框架的选择对于提升测试效率、保障产品质量的重要性。通过分析市场上主流的自动化测试工具,如Selenium、Appium、Jest等,结合具体项目需求,提出了一套系统化的选型与优化策略。文章首先概述了自动化测试的基本原理及其在现代软件开发中的角色变迁,随后详细对比了各主流框架的功能特点、适用场景及优缺点,最后基于实际案例,阐述了如何根据项目特性量身定制自动化测试解决方案,并给出了持续集成/持续部署(CI/CD)环境下的最佳实践建议。 --- ####
|
23天前
|
测试技术 C# 数据库
C# 单元测试框架 NUnit 一分钟浅谈
【10月更文挑战第17天】单元测试是软件开发中重要的质量保证手段,NUnit 是一个广泛使用的 .NET 单元测试框架。本文从基础到进阶介绍了 NUnit 的使用方法,包括安装、基本用法、参数化测试、异步测试等,并探讨了常见问题和易错点,旨在帮助开发者有效利用单元测试提高代码质量和开发效率。
132 64
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
46 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
9天前
|
测试技术 API Android开发
探索软件测试中的自动化框架选择与实践####
本文深入探讨了软件测试领域内,面对众多自动化测试框架时,如何依据项目特性和团队需求做出明智选择,并分享了实践中的有效策略与技巧。不同于传统摘要的概述方式,本文将直接以一段实践指南的形式,简述在选择自动化测试框架时应考虑的核心要素及推荐路径,旨在为读者提供即时可用的参考。 ####
|
13天前
|
测试技术 Android开发 UED
探索软件测试中的自动化框架选择
【10月更文挑战第29天】 在软件开发的复杂过程中,测试环节扮演着至关重要的角色。本文将深入探讨自动化测试框架的选择,分析不同框架的特点和适用场景,旨在为软件开发团队提供决策支持。通过对比主流自动化测试工具的优势与局限,我们将揭示如何根据项目需求和团队技能来选择最合适的自动化测试解决方案。此外,文章还将讨论自动化测试实施过程中的关键考虑因素,包括成本效益分析、维护难度和扩展性等,确保读者能够全面理解自动化测试框架选择的重要性。
31 1
|
19天前
|
监控 安全 jenkins
探索软件测试的奥秘:自动化测试框架的搭建与实践
【10月更文挑战第24天】在软件开发的海洋里,测试是确保航行安全的灯塔。本文将带领读者揭开软件测试的神秘面纱,深入探讨如何从零开始搭建一个自动化测试框架,并配以代码示例。我们将一起航行在自动化测试的浪潮之上,体验从理论到实践的转变,最终达到提高测试效率和质量的彼岸。
|
23天前
|
Web App开发 敏捷开发 存储
自动化测试框架的设计与实现
【10月更文挑战第20天】在软件开发的快节奏时代,自动化测试成为确保产品质量和提升开发效率的关键工具。本文将介绍如何设计并实现一个高效的自动化测试框架,涵盖从需求分析到框架搭建、脚本编写直至维护优化的全过程。通过实例演示,我们将探索如何利用该框架简化测试流程,提高测试覆盖率和准确性。无论你是测试新手还是资深开发者,这篇文章都将为你提供宝贵的洞见和实用的技巧。
|
11天前
|
机器学习/深度学习 自然语言处理 物联网
探索自动化测试框架的演变与未来趋势
随着软件开发行业的蓬勃发展,软件测试作为保障软件质量的重要环节,其方法和工具也在不断进化。本文将深入探讨自动化测试框架从诞生至今的发展历程,分析当前主流框架的特点和应用场景,并预测未来的发展趋势,为软件开发团队选择合适的自动化测试解决方案提供参考。