利用Numpy和Pandas对地铁客量数据进行实战分析(附源码)

简介: 利用Numpy和Pandas对地铁客量数据进行实战分析(附源码)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

首先我们来讲解一下Numpy和Pandas的异同

1)Numpy是数值计算的扩展包,能够高效处理N维数组,即处理高维数组或矩阵时会方便。Pandas是python的一个数据分析包,主要是做数据处理用的,以处理二维表格为主。

2)Numpy只能存储相同类型的ndarray,Pandas能处理不同类型的数据,例如二维表格中不同列可以是不同类型的数据,一列为整数一列为字符串。

3)Numpy支持并行计算,所以TensorFlow2.0、PyTorch都能和numpy能无缝转换。Numpy底层使用C语言编写,效率远高于纯Python代码。

4)Pansdas是基于Numpy的一种工具,该工具是为了解决数据分析任务而创建的。Pandas提供了大量快速便捷地处理数据的函数和方法。

5)Pandas和Numpy可以相互转换,DataFrame转化为ndarray只需要使用df.values即可,ndarray转化为DataFrame使用pd.DataFrame(array)即可。

通过提取每个站三个月15分钟粒度的上下客量数据,展示Pandas和Numpy的案例应用。

部分数据展示如下

初步分析数据发现数据有以下几个特点:

1、地铁数据的前六行是无效的,第七行给出了每个站点的名字;

2、每个车站是按照15分钟粒度统计客流,给出了进站、出战、进出站客流;

3、运营时间是从2:00-23:59,与地铁实际运营时间5:30-23:00不同,需要调整

下面获取车站名和车站编号

接下来定义两个函数,我们希望把所有的数据都写入两个文件夹,一个是”in.csv”存储每个站的进站数据,一个是”out.csv”存储每个站的出站数据

def process_not_exists(f):
    # 前五行是无用数据
    file = pd.read_excel(f, skiprows = 5, skipfooter = 3, usecols = target_col)
    arr = file.values
    # 构造一个字典先存储数据
    d_in = {}
    d_out = {}
    for i in stations_index:
    # 存储第i个车站的上下客流数据
        d_in[i] = []
        d_out[i] = []
    # 5:30 之后的数据是从excel的50行开始,处理后的数据应从43行开始
    for i in range(43,len(arr)):
        l = arr[i] # 获取第i行的数据
        # 通过条件直接筛选掉“进出站”
        if l[1] == '进站':
            # 进站处理
            for j in range(2,len(l)):
                d_in[j].append(l[j])
        if l[1] == '出站':
            # 出站处理
            for j in range(2,len(l)):
                d_out[j].append(l[j])
    in_list = [] # 存储进站数据
    out_list = [] # 存储出站数据
    for key in d_in:
        # d_in 与 d_out 的key均为车站的index
        in_list.append(d_in[key])
        out_list.append(d_out[key])
    df_in = pd.DataFrame(in_list)
    df_in.to_csv("./data/in.csv", header = True, index = None)
    df_out = pd.DataFrame(out_list)
    df_out.to_csv("./data/out.csv", header = True, index = None)
# 目标文件存在时
def process_exists(f,target_file_in,target_file_out):
    infile = pd.read_csv(target_file_in)
    outfile = pd.read_csv(target_file_out)
    in_arr = infile.values.tolist()
    out_arr = outfile.values.tolist()
    # 前五行是无用数据
    file = pd.read_excel(f, skiprows = 5, skipfooter = 3, usecols = target_col)
    arr = file.values
    # 构造一个字典先存储数据
    d_in = {}
    d_out = {}
    for i in stations_index:
    # 存储第i个车站的上下客流数据
        d_in[i] = []
        d_out[i] = []
    # 5:30 之后的数据是从excel的50行开始,处理后的数据应从43行开始
    for i in range(43,len(arr)):
        l = arr[i] # 获取第i行的数据
        # 通过条件直接筛选掉“进出站”
        if l[1] == '进站':
            # 进站处理
            for j in range(2,len(l)):
                d_in[j].append(l[j])
        if l[1] == '出站':
            # 出站处理
            for j in range(2,len(l)):
                d_out[j].append(l[j])
    in_list = [] # 存储进站数据
    out_list = [] # 存储出站数据
    for key in d_in:
        # d_in 与 d_out 的key均为车站的index
        in_list.append(d_in[key])
        out_list.append(d_out[key])
    #合并原有数据
    for i in range(len(in_arr)):
        in_arr[i] += in_list[i]
        out_arr[i] += out_list[i]
    # in_file
    df_in = pd.DataFrame(in_arr)
    df_in.to_csv("./data/in_test.csv",mode = 'r+', header = True, index = None)
    # out_file
    df_out = pd.DataFrame(out_arr)
    df_out.to_csv("./data/out_test.csv",mode = 'r+', header = True, index = None)

部分代码如下

for name in filenames:
    f = "./data/" + name
    target_file_in = "./data/in_test.csv"
    target_file_out = "./data/out_test.csv"
    # 若文件已存在
    if Path(target_file_in).exists() and Path(target_file_out).exists():
        print("exist")
        process_exists(f,target_file_in,target_file_out)
        #break
    else:
        print("not exist")
        process_not_exists(f)
print("done")
# 获取车站名和车站编号
nfile = pd.read_excel(f, skiprows = 5, skipfooter = 3, usecols = target_col)
arrt = nfile.values
stations_name = []
stations_index = []
for i in range(2,len(arrt[0])):
    stations_index.append(i)
    stations_name.append(arrt[0][i])
print(stations_name)
print(stations_index)
# 筛选掉 “合计”无用项,并设置target_col存储目标项
name = filenames[0]
f = "./data/" + name
# 前五行是无用数据
file = pd.read_excel(f, skiprows = 5, skipfooter = 3)
tarr = file.values
print(tarr[3])
test = tarr[0]
target_col = []
for i in range(len(test)):
    tmp = test[i]
    if tmp != '合计':
        target_col.append(i)
print(target_col)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
31 0
|
6天前
|
数据处理 Python
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具
在数据科学领域,Pandas和NumPy是每位数据科学家和分析师的必备工具。本文通过问题解答形式,深入探讨Pandas与NumPy的高级操作技巧,如复杂数据筛选、分组聚合、数组优化及协同工作,结合实战演练,助你提升数据处理能力和工作效率。
24 5
|
7天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
9天前
|
存储 数据采集 数据处理
效率与精准并重:掌握Pandas与NumPy高级特性,赋能数据科学项目
在数据科学领域,Pandas和NumPy是Python生态中处理数据的核心库。Pandas以其强大的DataFrame和Series结构,提供灵活的数据操作能力,特别适合数据的标签化和结构化处理。NumPy则以其高效的ndarray结构,支持快速的数值计算和线性代数运算。掌握两者的高级特性,如Pandas的groupby()和pivot_table(),以及NumPy的广播和向量化运算,能够显著提升数据处理速度和分析精度,为项目成功奠定基础。
19 2
|
13天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
22 3
|
15天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
35 5
|
14天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
31 2
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【10月更文挑战第4天】在数据科学领域,Pandas和NumPy是每位数据科学家不可或缺的秘密武器。Pandas凭借其DataFrame和Series数据结构,提供高效灵活的数据处理工具;NumPy则以其强大的N维数组对象ndarray和丰富的数学函数库,成为科学计算的基石。本文通过实战示例,展示了两者如何携手助力数据科学家在数据探索中披荆斩棘。Pandas擅长数据清洗、转换和结构化操作,NumPy则专注于数值计算与矩阵运算。通过结合使用,可以实现高效的数据处理与分析,大幅提升工作效率与数据处理深度。
37 4
|
1月前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
47 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用