多线程之Callable接口、ReentrantLock、信号量 Semaphore以及CountDownLatch

简介: 多线程之Callable接口、ReentrantLock、信号量 Semaphore以及CountDownLatch

1237570d05884c5a95002b3f59ed7864.png


一、Callable接口

Callable的用法

Callable 是一个 interface,相当于把线程封装了一个 "返回值",方便借助多线程的方式计算结果。

代码示例: 创建线程计算 1 + 2 + 3 + ... + 1000, 使用 Callable 版本

  public static void main(String[] args) throws ExecutionException, InterruptedException {
        Callable<Integer> callable = new Callable<Integer>() {
            @Override
            public Integer call() throws Exception {
                int sum = 0;
                for (int i = 1; i <= 1000; i++) {
                    sum += i;
                }
                return sum;
            }
        };
        FutureTask<Integer> futureTask = new FutureTask<>(callable);
        Thread t = new Thread(futureTask);
        t.start();
        int ret = futureTask.get();
        System.out.println(ret);
    }


1.创建一个匿名内部类, 实现 Callable 接口,Callable 带有泛型参数,泛型参数表示返回值的类型。


2.重写 Callable 的 call 方法, 完成累加的过程,直接通过返回值返回计算结果。


3.把 callable 实例使用 FutureTask 包装一下。

4.创建线程, 线程的构造方法传入 FutureTask ,此时新线程就会执行 FutureTask 内部的 Callable 的


call 方法, 完成计算,计算结果就放到了 FutureTask 对象中。


5.在主线程中调用 futureTask.get() 能够阻塞等待新线程计算完毕,并获取到 FutureTask 中的结


果。

小结

Callable 和 Runnable 都是描述一个 "任务",Callable 描述的是带有返回值的任务,Runnable 描述的是不带返回值的任务。


Callable 通常需要搭配 FutureTask 来使用,FutureTask 用来保存 Callable 的返回结果,因为Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定,FutureTask 就可以负责这个等待结果出来的工作。


二、ReentrantLock

ReentrantLock 的用法


ReentrantLock可重入的,和 synchronized类似, 保证线程安全。


ReentrantLock 的用法:


lock(): 加锁, 如果获取不到锁就死等


trylock(超时时间): 加锁, 如果获取不到锁, 等待一定的时间之后就放弃加锁


unlock(): 解锁


伪代码:

ReentrantLock lock = new ReentrantLock();
lock.lock();
try {
   // 业务逻辑
} finally {
   lock.unlock()
}


ReentrantLock 和 synchronized 的区别?(为什么有了 synchronized 还需要 juc(java.util.concurrent) 下的 lock?)


1.synchronized 是一个关键字, 是 JVM 内部实现的(可能是基于 C++ 实现的),ReentrantLock 是标准库的一个类, 在 JVM 外实现的(基于 Java 实现)。


2.synchronized 使用时不需要手动释放锁,ReentrantLock 使用时需要手动释放,ReentrantLock使用起来更灵活,但是也容易遗漏 unlock。


3.synchronized 在申请锁失败时, 会死等,ReentrantLock 可以通过 trylock 的方式等待一段时间就放弃。


4.synchronized 是非公平锁, ReentrantLock 默认是非公平锁,但是可以通过构造方法传入一个 true 开启公平锁模式。


5.ReentrantLock 有更强大的唤醒机制。synchronized 是通过 Object 的 wait / notify 实现等待-唤醒,每次唤醒的是一


个随机等待的线程。而ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线程。如何选择使用哪个锁?


在锁竞争不激烈的时候, 使用 synchronized, 效率更高, 自动释放更方便。


在锁竞争激烈的时候, 使用 ReentrantLock, 搭配 trylock 更灵活控制加锁的行为, 而不是死等。


如果需要使用公平锁, 使用 ReentrantLock。

三、信号量 Semaphore

如何理解信号量?

信号量用来表示 "可用资源的个数",其本质上就是一个计数器。Semaphore 的 PV 操作中的加减计数器操作都是原子的, 可以在多线程环境下直接使用。

代码示例:

1.创建 Semaphore 示例, 初始化为 4, 表示有 4 个可用资源

2.acquire 方法表示申请资源(P操作), release 方法表示释放资源(V操作)

3.创建 20 个线程, 每个线程都尝试申请资源, sleep 1秒之后, 释放资源

观察程序的执行效果:当申请到4个资源后,就会进行线程等待,等待资源的释放。

public static void main(String[] args) {
        Semaphore semaphore = new Semaphore(4);
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                try {
                    System.out.println("申请资源");
                    semaphore.acquire();
                    System.out.println("我获取到资源了");
                    Thread.sleep(1000);
                    System.out.println("我释放资源了");
                    semaphore.release();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };
        for (int i = 0; i < 20; i++) {
            Thread t = new Thread(runnable);
            t.start();
        }
    }


信号量可以用在过哪些场景下?

信号量是用来表示 "可用资源的个数",其本质上就是一个计数器。使用信号量可以实现 "共享锁", 比如某个资源允许 3 个线程同时使用, 那么就可以使用 P 操作(acquire 方法)作为加锁, V 操作(release 方法)作为解锁, 前三个线程的 P 操作都能顺利返回, 后续线程再进行 P 操作就会阻塞等待,直到前面的线程执行了 V 操作。

线程同步的方式有哪些?

synchronized, ReentrantLock, Semaphore 等都可以用于线程同步。

四、CountDownLatch

CountDownLatch是同时等待 N 个任务执行结束。

1.构造 CountDownLatch 实例, 初始化 10 表示有 10 个任务需要完成


2.每个任务执行完毕, 都调用 latch.countDown(),在 CountDownLatch 内部的计数器同时自减


3.主线程中使用 latch.await(), 阻塞等待所有任务执行完毕,相当于计数器为 0 了

 public static void main(String[] args) throws InterruptedException {
        CountDownLatch latch = new CountDownLatch(10);
        Runnable runnable = new Runnable() {
            @Override
            public void run() {
                try {
                    Thread.sleep((long) (Math.random()*10000));
                    latch.countDown();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        };
        for (int i = 0; i < 10; i++) {
            new Thread(runnable).start();
        }
        latch.await();
        System.out.println("10个任务全部结束");
    }


相关文章
|
5月前
|
Java 开发者
Java面试题:请解释内存泄漏的原因,并说明如何使用Thread类和ExecutorService实现多线程编程,请解释CountDownLatch和CyclicBarrier在并发编程中的用途和区别
Java面试题:请解释内存泄漏的原因,并说明如何使用Thread类和ExecutorService实现多线程编程,请解释CountDownLatch和CyclicBarrier在并发编程中的用途和区别
61 0
|
4月前
|
Java 开发者
解锁并发编程新姿势!深度揭秘AQS独占锁&ReentrantLock重入锁奥秘,Condition条件变量让你玩转线程协作,秒变并发大神!
【8月更文挑战第4天】AQS是Java并发编程的核心框架,为锁和同步器提供基础结构。ReentrantLock基于AQS实现可重入互斥锁,比`synchronized`更灵活,支持可中断锁获取及超时控制。通过维护计数器实现锁的重入性。Condition接口允许ReentrantLock创建多个条件变量,支持细粒度线程协作,超越了传统`wait`/`notify`机制,助力开发者构建高效可靠的并发应用。
95 0
|
2月前
|
Java C++
【多线程】JUC的常见类,Callable接口,ReentranLock,Semaphore,CountDownLatch
【多线程】JUC的常见类,Callable接口,ReentranLock,Semaphore,CountDownLatch
40 0
|
2月前
|
运维 API 计算机视觉
深度解密协程锁、信号量以及线程锁的实现原理
深度解密协程锁、信号量以及线程锁的实现原理
49 2
|
4月前
|
Java
【多线程面试题十六】、谈谈ReentrantLock的实现原理
这篇文章解释了`ReentrantLock`的实现原理,它基于Java中的`AbstractQueuedSynchronizer`(AQS)构建,通过重写AQS的`tryAcquire`和`tryRelease`方法来实现锁的获取与释放,并详细描述了AQS内部的同步队列和条件队列以及独占模式的工作原理。
【多线程面试题十六】、谈谈ReentrantLock的实现原理
|
3月前
|
Java 数据中心 微服务
Java高级知识:线程池隔离与信号量隔离的实战应用
在Java并发编程中,线程池隔离与信号量隔离是两种常用的资源隔离技术,它们在提高系统稳定性、防止系统过载方面发挥着重要作用。
80 0
|
4月前
利用信号量实现线程顺序执行
【8月更文挑战第24天】本文介绍了如何运用信号量确保多线程程序中线程按预定顺序执行的方法。信号量作为同步机制,可有效控制共享资源访问,防止数据不一致。实现步骤包括:引入必要的头文件(如 `&lt;pthread.h&gt;` 和 `&lt;semaphore.h&gt;`),定义信号量变量(如 `sem_t` 类型),初始化信号量(通常第一个信号量设为1,其余设为0),以及创建线程(每个线程执行特定任务并释放相应信号量)。
|
4月前
|
安全 C++
利用信号量实现线程顺序执行
【8月更文挑战第25天】信号量是多线程编程中用于控制共享资源访问的关键同步机制,能有效保证线程按预设顺序执行。实现方法包括:引入相关头文件(如 C++ 中的 `&lt;semaphore.h&gt;`),创建信号量并通过 `sem_init` 设置初始值;在各线程函数中运用 `sem_post` 与 `sem_wait` 来传递执行权;最后,通过 `sem_destroy` 销毁信号量以释放资源。使用过程中需注意错误处理、确保线程安全及合理设定信号量初值,以维持程序稳定性和高效性。
|
4月前
|
Java 开发者
Java多线程教程:使用ReentrantLock实现高级锁功能
Java多线程教程:使用ReentrantLock实现高级锁功能
50 1
|
4月前
|
数据采集 Java Python
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器
python 递归锁、信号量、事件、线程队列、进程池和线程池、回调函数、定时器