OpenCV中图像的自适应处理、Otsu方法讲解与实战(附Python源码)

简介: OpenCV中图像的自适应处理、Otsu方法讲解与实战(附Python源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、自适应处理

很多时候图像色彩是不均衡的,如果只使用一种阈值处理类型,就无法得到清晰有效的结果

下面使用五种常用的阈值处理类型对色彩不均衡的图像进行处理

代码如下

import cv2
image = cv2.imread("4.27.png") # 读取4.27.png
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.27.png转换为灰度图像
t1, dst1 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY) # 二值化阈值处理
t2, dst2 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY_INV) # 反二值化阈值处理
t3, dst3 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TOZERO) # 低于阈值零处理
t4, dst4 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TOZERO_INV) # 超出阈值零处理
t5, dst5 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_TRUNC) # 截断处理
# 分别显示经过5种阈值类型处理后的图像
cv2.imshow("BINARY", dst1)
cv2.imshow("BINARY_INV", dst2)
cv2.imshow("TOZERO", dst3)
cv2.imshow("TOZERO_INV", dst4)
cv2.imshow("TRUNC", dst5)
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

从视觉上看,对于色彩不均衡的图像,虽然使用截断处理的效果是五种阈值处理类型中效果比较好的,但是有些轮廓依然模糊不清

OpenCV提供了一种改进的阈值处理技术,图像中的不同区域使用不同的阈值,把这种改进的阈值处理技术称作自适应处理,自适应处理是根据图像中某一个正方形区域内的所有像素值按照指定的算法计算得到的。自适应处理能更好的处理明暗分布不均匀的图像,获得更简单的图像效果

OpenCV提供了adaptiveThresHole方法对图像进行自适应处理 语法格式如下

dst=cv2.adaptiveThreshold(src,maxValue,adaptiveMethod,thresholdType,blocksize,C)

maxValue阈值处理采用的最大值

adaptiveMethod 自适应阈值的计算方法 如下图所示

blocksize 一个正方形区域的带线啊哦

C 常量 阈值等于均值或者加权值减去这个常量

自适应处理保留了图像中的更多细节信息,更明显的保留了灰度图像主题的轮廓

代码如下

import cv2
image = cv2.imread("4.27.png") # 读取4.27.png
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.27.png转换为灰度图像
# 自适应阈值的计算方法为cv2.ADAPTIVE_THRESH_MEAN_C
athdMEAM = cv2.adaptiveThreshold\
    (image_Gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 3)
# 自适应阈值的计算方法为cv2.ADAPTIVE_THRESH_GAUSSIAN_C
athdGAUS = cv2.adaptiveThreshold\
    (image_Gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 5, 3)
# 显示自适应阈值处理的结果
cv2.imshow("MEAN_C", athdMEAM)
cv2.imshow("GAUSSIAN_C", athdGAUS)
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

二、Otsu方法

逐个寻找最合适的阈值不仅工作量大,而且效率低,为此OpenCV提供了Otsu方法,Otsu方法能够遍历所有可能的阈值,从中找到最合适的阈值

Otsu方法与thrshold方法语法基本一致,只不过为type传递参数时,要多传递一个参数,它的作用就是实现Otsu方法的阈值处理

下面是一幅亮度较高的图像,分别对这副图像进行二值化处理和实现Otsu方法的阈值处理,对比处理后的图像的差异如下

通过上图可以发现,通过Otsu方法的阈值处理可以找到最合适的阈值,这样可以将图像主题的轮廓很好的保存下来,获得了比较好的处理效果

代码如下

import cv2
image = cv2.imread("4.36.jpg") # 读取4.36.jpg
image_Gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 将4.36.jpg转换为灰度图像
t1, dst1 = cv2.threshold(image_Gray, 127, 255, cv2.THRESH_BINARY) # 二值化阈值处理
# 实现Otsu方法的阈值处理
t2, dst2 = cv2.threshold(image_Gray, 0, 255, cv2.THRESH_BINARY  + cv2.THRESH_OTSU)
cv2.putText(dst2, "best threshold: " + str(t2), (0, 30),
         cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) # 在图像上绘制最合适的阈值
cv2.imshow("BINARY", dst1) # 显示二值化阈值处理的图像
cv2.imshow("OTSU", dst2) # 显示实现Otsu方法的阈值处理
cv2.waitKey() # 按下任何键盘按键后
cv2.destroyAllWindows() # 销毁所有窗口

三、阈值处理的作用

阈值处理在计算机视觉技术中占有十分重要的位置,它是很多高级算法的底层处理逻辑之一,因为二值图像会忽略细节,放大特征,而很多高级算法要根据物体的轮廓来分析物体热症,所以二值图像非常适合做复杂的识别运算,在进行识别之前,应该先将图像转为灰度图像,再进行二值化处理,这样就得到了算法所需要物体的大概轮廓

下面利用阈值处理勾勒楼房和汽车的轮廓

从后面两幅图像可以看出,二值化处理后,图片只有纯黑和纯白两种颜色,图像中的楼房边缘变得更加鲜明,更容易被识别,地面因为颜色较深,所以大面积被涂黑,这样白色的汽车就与地面形成鲜明的反差,高级图像识别算法可以根据这种鲜明的像素变化提取特征,最后达到识别物体分类的目的

代码如下

import cv2
img = cv2.imread("car.jpg")  # 原始图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转为灰度图像
t1, dst1 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
t2, dst2 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)  # 反二值化阈值处理
cv2.imshow("img", img)  # 显示图像
cv2.imshow("gray", gray)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

总结

OpenCV提供了一个可以快速抠出图像主体线条的工具,这个工具就是阈值。在阈值的作用下,一幅彩色图像被转换为只有纯黑和纯白的二值图像。然而,灰度图像经5种阈值处理类型处理后,都无法得到图像主体的线条。为此,OpenCV提供了一种改进的阈值处理技术,即自适应处理,其关键在于对图像中的不同区域使用不同的阈值

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
1天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3月前
|
SQL JSON C语言
Python中字符串的三种定义方法
Python中字符串的三种定义方法
|
5月前
|
Python
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
28.从入门到精通:Python3 面向对象 面向对象技术简介 类定义 类对象 类的方法
|
Python
Python面向对象、类的抽象、类的定义、类名遵循大驼峰的命名规范创建对象、类外部添加和获取对象属性、类内部操作属性魔法方法__init__()__str__()__del__()__repr__()
面向对象和面向过程,是两种编程思想. 编程思想是指对待同一个问题,解决问题的套路方式.面向过程: 注重的过程,实现的细节.亲力亲为.面向对象: 关注的是结果, 偷懒.类和对象,是面向对象中非常重要的两个概念object 是所有的类基类,即最初始的类class 类名(object): 类中的代码PEP8代码规范:类定义的前后,需要两个空行 创建的对象地址值都不一样如dog和dog1的地址就不一样,dog的地址为2378043254528dog1的地址为2378044849840 8.类内部操作属性 sel
254 1
Python面向对象、类的抽象、类的定义、类名遵循大驼峰的命名规范创建对象、类外部添加和获取对象属性、类内部操作属性魔法方法__init__()__str__()__del__()__repr__()
|
1天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
1天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。