【大数据技术】Spark MLlib机器学习线性回归、逻辑回归预测胃癌是否转移实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习线性回归、逻辑回归预测胃癌是否转移实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

线性回归

过工具类MLUtils加载LIBSVM格式样本文件,每一行的第一个是真实值y,有10个特征值x,用1:double,2:double分别标注,即建立需求函数:

y=a_1x_1+a_2x_2+a_3x_3+a_4x_4+…+a_10x_10

通过样本数据和梯度下降训练模型,找到10个产生比较合理的参数值(a_1到a_10)

回归结果如下

部分代码如下 需要全部代码和数据集请点赞关注收藏后评论区留言私信

 

package com.etc
import org.apache.spark.mllib.regression.{LabeledPoint,  LinearRegressionWithSGD}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object  LinearRegressionDemo {
  def main(args: Array[String]): Unit = {
    //创建SparkContext
    val conf = new SparkConf().setMaster("local[4]").setAppName("LinearRegression")
    val sc = new SparkContext(conf)
    sc.setLogLevel("error")
    //加载数据样本
    val path = "data1.txt"
    //通过提供的工具类加载样本文件,每一行的第一个是y值,有10个特征值x,用1:double,2:double分别标注
    //即y=a1x1+a2x2+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7+a8x8+a9x9+a10x10
    //-9.490009878824548 1:0.4551273600657362 2:0.36644694351969087 3:-0.38256108933468047 4:-0.4458430198517267 5:0.33109790358914726 6:0.8067445293443565 7:-0.2624341731773887 8:-0.44850386111659524 9:-0.07269284838169332 10:0.5658035575800715
    val data: RDD[LabeledPoint] = MLUtils.loadLibSVMFile(sc, path).cache()
    //迭代次数
    val numIterations = 100
    //梯度下降步长
    val stepSize = 0.00000001
    //训练模型
    val model = LinearRegressionWithSGD.train(data, numIterations, stepSize)
    //模型评估
    val valuesAndPreds = data.map { point =>
      //根据模型预测Label值
      val prediction = model.predict(point.features)
      println(s"【真实值】:${point.label}      ;【预测值】:${prediction}")
      (point.label, prediction)
    }
    //打印模型参数
    println("【参数值】:"+model.weights)
        //求均方误差
    val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2) }.mean()
    println("训练模型的均方误差为 = " + MSE)
    sc.stop()
  }
}

逻辑回归预测胃癌转移

建立随机梯度下降的回归模型预测胃癌是否转移,数据特征说明如下:

y:胃癌转移情况(有转移y=1;无转移y=0)  

x1:确诊时患者的年龄(岁)  

x2:肾细胞癌血管内皮生长因子(VEGF)其阳性表述由低到高共三个等级  

x3:肾细胞癌组织内微血管数(MVC)  

x4:肾癌细胞核组织学分级,由低到高共4级  

x5:肾癌细胞分期,由低到高共4期。

预测结果如下

部分代码如下 需要全部代码和数据集请点赞关注收藏后评论区留言私信

package com.etc
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionWithSGD}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.util.MLUtils
object LogisticRegressionDemo{
  def main(args: Array[String]): Unit = {
    //建立spark环境
    val conf = new SparkConf().setAppName("logisticRegression").setMaster("local")
    val sc  = new SparkContext(conf)
    sc.setLogLevel("error")
    //通过MLUtils工具类读取LIBSVM格式数据集
    val data  = MLUtils.loadLibSVMFile(sc , "wa.txt")
    //测试集和训练集按2:8的比例分
    val Array(traning,test) = data.randomSplit(Array(0.8,0.2),seed = 1L)
    println(traning.count ,test.count)
    traning.foreach(println)
    //建立LogisticRegressionWithLBFGS对象,设置分类数 2 ,run传入训练集开始训练,返回训练后的模型
    val model = new LogisticRegressionWithLBFGS()
      .setNumClasses(2)
      .run(traning)
    //使用训练后的模型对测试集进行测试,同时打印标签和测试结果
    val labelAndPreds = test.map{ point =>
      val prediction = model.predict(point.features)
      (point.label, prediction)
    }
    labelAndPreds.foreach(println)
    println("推荐"+model.weights)
    val trainErr = labelAndPreds.filter( r => r._1 != r._2).count.toDouble / test.count
    println("容错率为trainErr: " +trainErr)
    val predictionAndLabels = test.map{                           //计算测试值
      case LabeledPoint(label,features) =>
        val prediction = model.predict(features)
        (prediction,label)                                              //存储测试值和预测值
    }
    val metrics = new MulticlassMetrics(predictionAndLabels)           //创建验证类
    val precision = metrics.precision                                   //计算验证值
    println("Precision= "+precision)
    val patient = Vectors.dense(Array(20,1,0.0,1,1))
    val d = model.predict(patient)
    print("预测的结果为:" + d)
    //计算患者可能性
    if(d == 1){
      println("患者的胃癌有几率转移。 ")
    } else {
      println("患者的胃癌没有几率转移 。")
    }
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
168 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
3月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
3月前
|
机器学习/深度学习 存储 自然语言处理
【机器学习】基于逻辑回归的分类预测
【机器学习】基于逻辑回归的分类预测
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
2月前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
3月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
3月前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)