【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

特征抽取 TF-IDF

TF-IDF是两个统计量的乘积,即词频(Term Frequency, TF)和逆向文档频率(Inverse Document Frequency, IDF)。它们各自有不同的计算方法。

TF是一个文档(去除停用词之后)中某个词出现的次数。它用来度量词对文档的重要程度,TF越大,该词在文档中就越重要。IDF逆向文档频率,是指文档集合中的总文档数除以含有该词的文档数,再取以10为底的对数。

TF-IDF的主要思想是如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为这个词或者短语具有很好的类别区分能力

具体实现步骤如下

(1)新建MAVEN项目,名称为spark-mlllib

(2)数据准备。新建一个文本文件,包含四行数据,内容如下:

hello mllib hello spark
goodBye spark
hello spark
goodBye spark

(3)新建Scala类,功能是计算单词的TF –IDF

创建TF计算实例

val hashingTF = new HashingTF()

//计算文档TF值

val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)

//创建IDF实例并计算

val idf = new IDF().fit(tf)

//计算TF_IDF词频

val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf)

统计结果如下

部分代码如下

package com.etc
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object TF_IDF {
  def main(args: Array[String]) {
    //创建环境变量
    val conf = new SparkConf()
      //设置本地化处理
      .setMaster("local")
      //设定名称
      .setAppName("TF_IDF") //设定名称
    val sc = new SparkContext(conf)
    //设置日志级别
    sc.setLogLevel("error")
    //读取数据并将句子分割成单词
    val documents = sc.textFile("a.txt")
      .map(_.split(" ").toSeq)
    println("分词的结果为:")
    documents.foreach(println)
    //创建TF计算实例
    val hashingTF = new HashingTF()
    //计算文档TF值
    val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)
    //创建IDF实例并计算
    val idf = new IDF().fit(tf)
    //计算TF_IDF词频
    val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf) //计算TF_IDF词频
    println("计算TF_IDF值:")
     tf_idfRDD.foreach(println)
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
21天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
56 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
12天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
41 3
|
1月前
|
机器学习/深度学习 自然语言处理 算法
大数据与机器学习
大数据与机器学习紧密相关,前者指代海量、多样化且增长迅速的数据集,后者则是使计算机通过数据自动学习并优化的技术。大数据涵盖结构化、半结构化及非结构化的信息,其应用广泛,包括商业智能、金融和医疗保健等领域;而机器学习分为监督学习、无监督学习及强化学习,被应用于图像识别、自然语言处理和推荐系统等方面。二者相结合,能有效提升数据分析的准确性和效率,在智能交通、医疗及金融科技等多个领域创造巨大价值。
100 2
|
30天前
|
Oracle 大数据 数据挖掘
企业内训|大数据产品运营实战培训-某电信运营商大数据产品研发中心
本课程是TsingtaoAI专为某电信运营商的大数据产品研发中心的产品支撑组设计,旨在深入探讨大数据在电信运营商领域的应用与运营策略。通过密集的培训,从数据的本质与价值出发,系统解析大数据工具和技术的最新进展,深入剖析行业内外的实践案例。课程涵盖如何理解和评估数据、如何有效运用大数据技术、以及如何在不同业务场景中实现数据的价值转化。
39 0
|
3月前
|
数据采集 人工智能 安全
AI大数据处理与分析实战--体育问卷分析
本文是关于使用AI进行大数据处理与分析的实战案例,详细记录了对深圳市义务教育阶段学校“每天一节体育课”网络问卷的分析过程,包括数据概览、交互Prompt、代码处理、年级和学校维度的深入分析,以及通过AI工具辅助得出的分析结果和结论。
|
3月前
|
大数据 API 数据处理
揭秘!Flink如何从默默无闻到大数据界的璀璨明星?起源、设计理念与实战秘籍大公开!
【8月更文挑战第24天】Apache Flink是一款源自Stratosphere项目的开源流处理框架,由柏林理工大学等机构于2010至2014年间开发,并于2014年捐赠给Apache软件基金会。Flink设计之初即聚焦于提供统一的数据处理模型,支持事件时间处理、精确一次状态一致性等特性,实现了流批一体化处理。其核心优势包括高吞吐量、低延迟及强大的容错机制。
64 1
|
3月前
|
API C# Shell
WPF与Windows Shell完美融合:深入解析文件系统操作技巧——从基本文件管理到高级Shell功能调用,全面掌握WPF中的文件处理艺术
【8月更文挑战第31天】Windows Presentation Foundation (WPF) 是 .NET Framework 的关键组件,用于构建 Windows 桌面应用程序。WPF 提供了丰富的功能来创建美观且功能强大的用户界面。本文通过问题解答的形式,探讨了如何在 WPF 应用中集成 Windows Shell 功能,并通过具体示例代码展示了文件系统的操作方法,包括列出目录下的所有文件、创建和删除文件、移动和复制文件以及打开文件夹或文件等。
77 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
8天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
67 7
下一篇
无影云桌面