【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术】Spark MLlib机器学习特征抽取 TF-IDF统计词频实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

特征抽取 TF-IDF

TF-IDF是两个统计量的乘积,即词频(Term Frequency, TF)和逆向文档频率(Inverse Document Frequency, IDF)。它们各自有不同的计算方法。

TF是一个文档(去除停用词之后)中某个词出现的次数。它用来度量词对文档的重要程度,TF越大,该词在文档中就越重要。IDF逆向文档频率,是指文档集合中的总文档数除以含有该词的文档数,再取以10为底的对数。

TF-IDF的主要思想是如果某个词或短语在一篇文章中出现的概率高,并且在其他文章中很少出现,则认为这个词或者短语具有很好的类别区分能力

具体实现步骤如下

(1)新建MAVEN项目,名称为spark-mlllib

(2)数据准备。新建一个文本文件,包含四行数据,内容如下:

hello mllib hello spark
goodBye spark
hello spark
goodBye spark

(3)新建Scala类,功能是计算单词的TF –IDF

创建TF计算实例

val hashingTF = new HashingTF()

//计算文档TF值

val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)

//创建IDF实例并计算

val idf = new IDF().fit(tf)

//计算TF_IDF词频

val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf)

统计结果如下

部分代码如下

package com.etc
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object TF_IDF {
  def main(args: Array[String]) {
    //创建环境变量
    val conf = new SparkConf()
      //设置本地化处理
      .setMaster("local")
      //设定名称
      .setAppName("TF_IDF") //设定名称
    val sc = new SparkContext(conf)
    //设置日志级别
    sc.setLogLevel("error")
    //读取数据并将句子分割成单词
    val documents = sc.textFile("a.txt")
      .map(_.split(" ").toSeq)
    println("分词的结果为:")
    documents.foreach(println)
    //创建TF计算实例
    val hashingTF = new HashingTF()
    //计算文档TF值
    val tf = hashingTF.transform(documents).cache()
    println("计算单词出现的次数结果为:")
    tf.foreach(println)
    //创建IDF实例并计算
    val idf = new IDF().fit(tf)
    //计算TF_IDF词频
    val tf_idfRDD: RDD[linalg.Vector] = idf.transform(tf) //计算TF_IDF词频
    println("计算TF_IDF值:")
     tf_idfRDD.foreach(println)
  }
}

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
46 2
|
15天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
38 1
|
27天前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
57 3
|
9天前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
38 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
233 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
108 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
6月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
292 0
|
6月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
852 0
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【2月更文挑战第20天】 在数据科学与人工智能的领域中,支持向量机(SVM)是一种强大的监督学习算法,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将深入探讨SVM的核心概念、工作原理以及实际应用案例。我们将透过算法的数学原理,揭示如何利用SVM进行有效的数据分类与回归分析,并讨论其在处理非线性问题时的优势。通过本文,读者将对SVM有更深层次的理解,并能够在实践中应用这一算法解决复杂的数据问题。
77 0