GPU实例使用--vGPU资源利用率的提升、监控与告警的实现

简介: 随着AI计算及云游戏为代表的图形渲染业务的飞速发展,越来越多的企业和个人开始使用GPU实例。同时,由于GPU算力资源成本较高,对于负载相对较小的业务,客户会更倾向于选择使用1/2或者1/4甚至更小的vGPU实例来运行其业务,vGPU技术随之得以迅速发展。

一、背景

随着AI计算及云游戏为代表的图形渲染业务的飞速发展,越来越多的企业和个人开始使用GPU实例。同时,由于GPU算力资源成本较高,对于负载相对较小的业务,客户会更倾向于选择使用1/2或者1/4甚至更小的vGPU实例来运行其业务,vGPU技术随之得以迅速发展。目前主流的vGPU技术是通过对物理GPU资源进行显存切分隔离,然后以时间片轮转的方式调度使用GPU资源。这就要求对物理GPU进行合理的切分、调度管理,并且能够及时监控物理GPU、vGPU的利用率、性能及健康状态,并且在GPU/vGPU异常时能够及时告知用户或研发人员,以便及时解决问题、避免长时间影响客户的业务。下面,分两部分介绍下在阿里云上是如何提升vGPU资源利用率的,并且如何对vGPU进行监控与告警。

二、vGPU利用率的提升

当前主流的vGPU实例实现方案大体是这样的:首先将物理GPU切分为多个vGPU,然后根据资源分配策略将物理GPU上的vGPU分配给Guest VM,最后再根据调度策略将这些vGPU通过time-sliced的方式轮流使用GPU的Graphics/Compute、3D、编解码等引擎资源。在时间切片 vGPU 中,在 vGPU 上运行的进程被安排为串行运行。当进程在 vGPU 上运行时,vGPU 独占使用 GPU 的引擎,其它vGPU 都会等待,直到自己的时间片到来。

在云厂商使用的主流的vGPU切分方案中,为了降低单物理GPU故障时对vGPU实例的影响,通常采用Breadth-first分配策略,即广度优先遍历算法,该策略尝试最小化每个物理 GPU 上运行的 vGPU 数量,即分配支持该vGPU且其上运行vGPU数量最少的的物理GPU。然后,使用Fixed share按照time-sliced时间片轮转的方式将运行在vGPU上的业务调度到GPU引擎上,轮流使用GPU的Graphics/Compute、3D、编解码等引擎资源。在时间切片 vGPU 中,在 vGPU 上运行的进程被安排为串行运行。当进程在 vGPU 上运行时,vGPU 独占使用 GPU 的引擎,其它vGPU 都会等待,直到自己的时间片到来。该调度策略在云上可以保证各个vGPU实例的公平,避免graphics-intensive业务抢占graphics-light业务的运行时间。

但是,随着vGPU技术的日趋完善与稳定性的不断提高,加之很多云厂商为了提高物理GPU资源利用率,都支持了vGPU混部技术,阿里云的vGPU混部的实现需要考虑与老版本兼容,大体实现步骤为:

  1. 查询Host上的GPU信息,切片时会使用该信息。
  2. 查询当前某GPU上的vGPU信息,用于分配给待创建的vGPU实例。
  3. 根据创建的实例机型,分配空闲的vGPU device。当没有空闲的vGPU时,选择空闲GPU进行切片,并分配vGPU device给实例。
  4. 当某个GPU上的vGPU实例全部释放时,需要清除该GPU的切片信息,以便下次重新切片成其它规格的vGPU device。
  5. 切片的实现与释放都由管控侧操作,避免了上下信息不一致带来的实例启动失败等问题。
  6. 混部的实现中,需要指定vGPU所属GPU的BDF,以此来区分老版本,确保新老版本在现网正常运行。

由此可以看出,Breadth-frist分配策略与vGPU混部之间存在冲突,无法共存,这就降低了物理GPU资源的可用率。举个例子来说,例如在一个Host上有4个物理GPU,理论上可以创建8个1/2 vGPU实例或者16个1/4 vGPU实例。如果采用breadth-first,客户A使用4个1/2实例,客户B使用4个1/4实例,如果客户A先创建实例,那么这4个1/2实例会占用4个物理GPU实例,导致客户B的实例无法创建。而使用depth-first,客户A的4个1/2实例会使用2个物理GPU,客户B的1/4实例则会使用另外2个物理GPU,显著提升了物理GPU的资源利用率,也就提高了资源售卖率、降低了成本。混部效果如下图所示:

1.png

目前已经支持1/1到1/24规格的vGPU切分,极大的方便了客户根据自身业务选择合适的规格,降低了客户成本,同时提高了GPU资源利用率。



三、vGPU的监控与告警

vGPU实例的最大客户就是云游戏,而云游戏对性能有极高的要求,例如大多数游戏需要满足60 FPS的要求,这就要求vGPU性能不能出现抖动和卡顿。而这类性能问题是无法通过日志来定位的,加上掉卡、TDR等常见问题的频发,监控与告警机制就显得尤为重要了。由于现有的监控工具容易导致Host vGPU driver死锁、CPU利用率冲高甚至hang住等问题,我们自己开发了一套vGPU监控程序来监控vGPU状态,大体步骤如下:

  1. 当机器部署上线后,监控任务开始启动,当vGPU VM启动后,开始采集物理GPU及vGPU相关信息,包括GPU温度、功耗、显存使用情况、GPU/vGPU利用率等,甚至还包括vGPU上进程的利用率以及license状态等信息。
  2. vGPU智能监控已经完全接入嫦娥,运维及研发同学在定位vGPU相关问题时,可以清晰直观地通过嫦娥上的监控信息进行分析与定位。目前已将上述所有信息都接入嫦娥监控,包括GPU的温度、功耗、显存利用率、GPU利用率、clock、编解码等:







还有vGPU相关的信息,包括vGPU利用率、显存利用率、进程利用率、编解码利用率、license状态等等。





  1. 设置各个指标的告警阈值,当达到阈值时触发告警,并及时通知到开发、运维人员,有必要时通知客户系统管理员,以便及时处理问题,保证系统和客户业务的稳定运行。
  2. 结合vGPU热迁移技术,将GPU负载高且满足热迁移条件的vGPU实例迁移到GPU负载低的Host上,达到负载均衡的目的,保证vGPU业务高效稳定的运行。
  3. 通过对用户实例使用vGPU情况进行大数据统计分析,了解典型客户、典型场景的真实资源需求情况,辅助PD进行产品设计,支撑异构实例研发的方向决策,制定更合理的实例规格,对剩余的CPU或内存资源与主售实例进行混买,提高实例密度、降低成本。
  4. 根据上述嫦娥展示的监控数据,就可以很方便的来定位vGPU实例性能问题, 例如:
  1. 对于FPS持续很低等问题,可以关注vGPU的License是否激活,1代表已激活,0代表未激活;
  2. 对于FPS达不到预期的60等问题,可以关注GPU的功耗、温度、利用率等是否已经到达瓶颈;
  3. 对于VM内应用性能、卡顿等问题,可以关注vGPU中的各项利用率指标是否正常;
  4. 当然了,Host驱动与Guest驱动版本是否匹配,clock是否有限频等,也可能导致性能问题。

如果以上都正常,就要结合是否有XID error,CPU、内存、网络、磁盘等是否有瓶颈来综合定位了。

四、结束语

阿里云的vGPU实现方案,集vGPU混部、监控告警、热迁移于一体,不仅最大的提高了GPU资源售卖率,而且为开发、运维人员定位GPU/vGPU的功能、性能问题带来了极大的便利,还能通过告警及早发现各类问题,确保客户业务稳定、高效的运行。


我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
269 0
|
5月前
|
机器学习/深度学习 编解码 人工智能
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
随着人工智能、大数据和深度学习等领域的快速发展,GPU服务器的需求日益增长。阿里云的GPU服务器凭借强大的计算能力和灵活的资源配置,成为众多用户的首选。很多用户比较关心gpu云服务器的收费标准与活动价格情况,目前计算型gn6v实例云服务器一周价格为2138.27元/1周起,月付价格为3830.00元/1个月起;计算型gn7i实例云服务器一周价格为1793.30元/1周起,月付价格为3213.99元/1个月起;计算型 gn6i实例云服务器一周价格为942.11元/1周起,月付价格为1694.00元/1个月起。本文为大家整理汇总了gpu云服务器的最新收费标准与活动价格情况,以供参考。
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
|
3月前
|
人工智能 调度 开发工具
xGPU来啦!免费GPU资源开发花样AI应用!
为了降低AI应用服务和推广的门槛,解决开发者面临的实际痛点,ModelScope社区推出 xGPU 服务,让大家能够免费使用高性能 GPU 资源,托管自己的AI应用服务。
|
4月前
|
机器学习/深度学习 存储 人工智能
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
阿里云的GPU云服务器产品线在深度学习、科学计算、图形渲染等多个领域展现出强大的计算能力和广泛的应用价值。本文将详细介绍阿里云GPU云服务器中的gn6v、gn7i、gn6i三个实例规格族的性能特点、区别及选择参考,帮助用户根据自身需求选择合适的GPU云服务器实例。
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
|
5月前
|
Serverless API 异构计算
函数计算产品使用问题之gpu实例函数该如何创建
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
6月前
|
存储 监控 Serverless
函数计算产品使用问题之T4和A10 GPU实例的区别有哪些
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
103 0
|
6月前
|
弹性计算 Serverless 文件存储
函数计算产品使用问题之如何使用GPU资源
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
6月前
|
弹性计算 文字识别 异构计算
印刷文字识别使用问题之如何创建GPU实例
印刷文字识别产品,通常称为OCR(Optical Character Recognition)技术,是一种将图像中的印刷或手写文字转换为机器编码文本的过程。这项技术广泛应用于多个行业和场景中,显著提升文档处理、信息提取和数据录入的效率。以下是印刷文字识别产品的一些典型使用合集。
|
7月前
|
运维 Serverless 文件存储
Serverless 应用引擎产品使用合集之函数实例运行期间相关的依赖资源(vcpu、临时磁盘、GPU)是否会随函数运行完毕而释放
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
|
8月前
|
机器学习/深度学习 弹性计算 自然语言处理
【阿里云弹性计算】深度学习训练平台搭建:阿里云 ECS 与 GPU 实例的高效利用
【5月更文挑战第28天】阿里云ECS结合GPU实例为深度学习提供高效解决方案。通过弹性计算服务满足大量计算需求,GPU加速训练。用户可按需选择实例规格,配置深度学习框架,实现快速搭建训练平台。示例代码展示了在GPU实例上使用TensorFlow进行训练。优化包括合理分配GPU资源和使用混合精度技术,应用涵盖图像识别和自然语言处理。注意成本控制及数据安全,借助阿里云推动深度学习发展。
293 2

热门文章

最新文章

相关产品

  • GPU云服务器