【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 【大数据技术Hadoop+Spark】HDFS Shell常用命令及HDFS Java API详解及实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

一、HDFS的Shell介绍

Shell在计算机科学中俗称“壳”,是提供给使用者使用界面的进行与系统交互的软件,通过接收用户输入的命令执行相应的操作,Shell分为图形界面Shell和命令行式Shell。

文件系统(FS)Shell包含了各种的类Shell的命令,可以直接与Hadoop分布式文件系统以及其他文件系统进行交互。

常用命令如下

二、案例-Shell命令

三、HDFS的Java API

由于Hadoop是使用Java语言编写的,因此可以使用Java API操作Hadoop文件系统。HDFS Shell本质上就是对Java API的应用,通过编程的形式操作HDFS,其核心是使用HDFS提供的Java API构造一个访问客户端对象,然后通过客户端对象对HDFS上的文件进行操作(增、删、改、查)。

Hadoop整合了众多文件系统,HDFS只是这个文件系统的一个实例。

在Java中操作HDFS,创建一个客户端实例主要涉及以下两个类:

Configuration:该类的对象封装了客户端或者服务器的配置,Configuration实例会自动加载HDFS的配置文件core-site.xml,从中获取Hadoop集群的配置信息。

FileSystem:该类的对象是一个文件系统对象。

FileSystem对象的一些方法可以对文件进行操作,常用方法如下:

四、案例-使用Java API操作HDFS

1:搭建项目环境

创建一个项目名为“HadoopDemo”,包名为“com.chapter03”的Maven项目,并在项目的pom.xml文件中引入hadoop-common、hadoop-hdfs、hadoop-client以及单元测试junit的依赖。

2:初始化客户端对象

首先在项目src文件夹下创建com.chapter03. hdfsdemo包,并在该包下创建HDFS_API_TEST.java文件,编写Java测试类,构建Configuration和FileSystem对象,初始化一个客户端实例进行相应的操作。

3:上传文件到HDFS

由于采用Java测试类来实现JavaApi对HDFS的操作,因此可以在HDFS_CRUD.java文件中添加一个AddFileToHdfs()方法来演示本地文件上传到HDFS的示例。

4. 从HDFS下载文件到本地

在HDFS_CRUD.java文件中添加一个DownloadFileToLocal()方法,来实现从HDFS中下载文件到本地系统的功能。

5. 目录操作

在文件添加一个MkdirAndDeleteAndRename()方法,实现创建,删除,重命名文件。

6. 查看目录中的文件信息

在文件中添加一个ListFiles()方法,实现查看目录中所有文件的详细信息的功能。

java类代码如下

package com.chapter03.hdfsdemo;
import java.io.FileNotFoundException;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.BlockLocation;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.LocatedFileStatus;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.RemoteIterator;
import org.junit.Before;
import org.junit.Test;
public class HDFS_API_TEST {
  FileSystem fs = null;
  @Before
  public void init() throws Exception {
    // 构造配置参数对象
    Configuration conf = new Configuration();
    // 设置访问的hdfs的URI
    conf.set("fs.defaultFS", "hdfs://172.16.106.69:9000");
    // 设置本机的hadoop的路径
    System.setProperty("hadoop.home.dir", "D:\\hadoop");
    // 设置客户端访问身份
    System.setProperty("HADOOP_USER_NAME", "root");
    // 通过FileSystem的静态get方法获取文件系统客户端对象
    fs = FileSystem.get(conf);
  }
  @Test
  public void testAddFileToHdfs() throws IOException {
    // 要上传的文件所在本地路径
    Path src = new Path("D:/test.txt");
    // 要上传到hdfs的目标路径
    Path dst = new Path("/testFile");
    // 上传文件方法
    fs.copyFromLocalFile(src, dst);
    // 关闭资源
    fs.close();
  }
  // 从hdfs中复制文件到本地文件系统
  @Test
  public void testDownloadFileToLocal() throws IllegalArgumentException, IOException {
    // 下载文件
    fs.copyToLocalFile(new Path("/testFile"), new Path("D:/"));
  }
  // 创建,删除,重命名文件
  @Test
  public void testMkdirAndDeleteAndRename() throws Exception {
    // 创建目录
    fs.mkdirs(new Path("/test1"));
    fs.rename(new Path("/test1"),new Path("/tes3"));
    // 删除文件夹,如果是非空文件夹,参数2必须给值true
    fs.delete(new Path("/test2"), true);
  }
  // 查看目录信息,只显示文件
  @Test
  public void testListFiles() throws FileNotFoundException, IllegalArgumentException, IOException {
    // 获取迭代器对象
    RemoteIterator<LocatedFileStatus> listFiles = fs.listFiles(new Path("/"), true);
    while (listFiles.hasNext()) {
      LocatedFileStatus fileStatus = listFiles.next();
      // 打印当前文件名
      System.out.println(fileStatus.getPath().getName());
      // 打印当前文件块大小
      System.out.println(fileStatus.getBlockSize());
      // 打印当前文件权限
      System.out.println(fileStatus.getPermission());
      // 打印当前文件内容长度
      System.out.println(fileStatus.getLen());
      // 获取该文件块信息(包含长度,数据块,datanode的信息)
      BlockLocation[] blockLocations = fileStatus.getBlockLocations();
      for (BlockLocation bl : blockLocations) {
        System.out.println("block-length:" + bl.getLength() + "--" + "block-offset:" + bl.getOffset());
        String[] hosts = bl.getHosts();
        for (String host : hosts) {
          System.out.println(host);
        }
      }
      System.out.println("----------------------------");
    }
  }
  // 查看文件及文件夹信息
  @Test
  public void ListFileAll() throws FileNotFoundException, IllegalArgumentException, IOException {
    // 获取HDFS系统中文件和目录的元数据等信息
    FileStatus[] listStatus = fs.listStatus(new Path("/"));
    String filelog = "文件夹--       ";
    for (FileStatus fstatus : listStatus) {
      // 判断是文件还是文件夹
      if (fstatus.isFile()) {
        filelog = "文件--         ";
      }
      System.out.println(filelog + fstatus.getPath().getName());
    }
  }
}

创作不易 觉得有帮助请点赞关注收藏

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
打赏
0
0
0
0
146
分享
相关文章
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
99 11
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
130 79
Java注解的底层源码剖析与技术认识
Java注解(Annotation)是Java 5引入的一种新特性,它提供了一种在代码中添加元数据(Metadata)的方式。注解本身并不是代码的一部分,它们不会直接影响代码的执行,但可以在编译、类加载和运行时被读取和处理。注解为开发者提供了一种以非侵入性的方式为代码提供额外信息的手段,这些信息可以用于生成文档、编译时检查、运行时处理等。
107 7
智慧产科一体化管理平台源码,基于Java,Vue,ElementUI技术开发,二开快捷
智慧产科一体化管理平台覆盖从备孕到产后42天的全流程管理,构建科室协同、医患沟通及智能设备互联平台。通过移动端扫码建卡、自助报道、智能采集数据等手段优化就诊流程,提升孕妇就诊体验,并实现高危孕产妇五色管理和孕妇学校三位一体化管理,全面提升妇幼健康宣教质量。
59 12
SaaS云计算技术的智慧工地源码,基于Java+Spring Cloud框架开发
智慧工地源码基于微服务+Java+Spring Cloud +UniApp +MySql架构,利用传感器、监控摄像头、AI、大数据等技术,实现施工现场的实时监测、数据分析与智能决策。平台涵盖人员、车辆、视频监控、施工质量、设备、环境和能耗管理七大维度,提供可视化管理、智能化报警、移动智能办公及分布计算存储等功能,全面提升工地的安全性、效率和质量。
CRaC技术助力ACS上的Java应用启动加速
容器计算服务借助ACS的柔性算力特性并搭配CRaC技术极致地提升Java类应用的启动速度。
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
JavaFX是Java的下一代图形用户界面工具包。JavaFX是一组图形和媒体API,我们可以用它们来创建和部署富客户端应用程序。 JavaFX允许开发人员快速构建丰富的跨平台应用程序,允许开发人员在单个编程接口中组合图形,动画和UI控件。本文详细介绍了JavaFx的常见用法,相信读完本教程你一定有所收获!
3097 2
Java最新图形化界面开发技术——JavaFx教程(含UI控件用法介绍、属性绑定、事件监听、FXML)
建筑施工一体化信息管理平台源码,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
智慧工地云平台是专为建筑施工领域打造的一体化信息管理平台,利用大数据、云计算、物联网等技术,实现施工区域各系统数据汇总与可视化管理。平台涵盖人员、设备、物料、环境等关键因素的实时监控与数据分析,提供远程指挥、决策支持等功能,提升工作效率,促进产业信息化发展。系统由PC端、APP移动端及项目、监管、数据屏三大平台组成,支持微服务架构,采用Java、Spring Cloud、Vue等技术开发。
129 7
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
130 4
大数据实战之spark安装部署
楔子 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的。一段时间之后,我做了一个有趣的数据科学项目,它试着去预测在泰坦尼克号上幸存。
3104 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等