极智AI | TensorRT API构建模型推理流程

简介: 大家好,我是极智视界,本文介绍一下 TensorRT API 构建模型推理流程。

大家好,我是极智视界,本文介绍一下 TensorRT API 构建模型推理流程。

TensorRT 构建模型推理一般有三种方式:(1) 使用框架自带的 TensorRT 接口,如 TF-TRT、Torch-TRT;(2) 使用 Parser 前端解释器,如 TF / Torch / ... -> ONNX -> TensorRT;(3) 使用 TensorRT 原生 API 搭建网络。当然难度和易用性肯定是由低到高的,伴随而来的性能和兼容性也是由低到高的。这里我们直接介绍第三种方式。


1 TensorRT API 构建流程

TensorRT API 的整个构建过程可以分为 构建阶段运行阶段 ,其中构建阶段指的是添加算子&数据、网络参数配置、进行算子间逻辑连接以组建模型网,来生成 TensorRT Engine;运行阶段则可以抛开算子实现,直接调用构建阶段生成的 TensorRT Engine 进行前向推理计算。两个阶段中都有一些比较关键的模块,在下面的图中予以列出:

下面分别进行细致介绍。


2 构建阶段

2.1 构建 Logger

首先是构建 Logger 日志记录器:

logger = trt.Logger(trt.Logger.VERBOSE)

可选参数:VERBOSE、INFO、WARNING、ERROR、INTERNAL_ERROR,产生不同等级的日志,由详细到简略:

  • VERIOSE:[TensorRT] VERBOSE:Graph construction and optimization completed in 0.000261295 seconds.
  • INFO:[TensorRT] INFO:Detected 1 inputs and 1 output network tensors.
  • WARNING:[TensorRT] WARNING:Tensor DataType is determined at build time for tensors not marked as input or output.
  • ERROR:[TensorRT] ERROR:INVALID_CONFIG:Deserialize the cuda engine failed.
  • INTERNAL_ERROR:[TensorRT] ERROR:../builder/tacticOptimizer.cpp (1820) - TRTInternal Error in computeCosts:0 (Could not find any implementation for node (Unnamed Layer* 0) [TopK].)

2.2 构建 Builder

然后是构建 Builder 网络元数据,这是模型搭建的入口,网络的 TensorRT 内部表示以及可执行程序引擎,都是由该对象的成员方法生成的,来看 Builder 是怎么构建的:

builder = trt.Builder(logger)

来看 Builder 的常用成员:

  • builder.max_batch_size = 256:用于指定最大 batch size,在 static shape 模式下使用;
  • builder.max_workspace_size = 1 << 30:用于指定最大可用显存,单位为 byte ( 注意:该项即将被废弃);
  • builder.fp16_mode = True / False:用于开启 / 关闭 fp16 模式 ( 注意:该项即将被废弃);
  • builder.int8_mode = True / False:用于开启 / 关闭 int8 模式 ( 注意:该项即将被废弃);
  • builder.int8_calibrator = ... :int8 模式的校准表 ( 注意:该项即将被废弃);
  • builder.strict_type_constraints = True / False:开启 / 关闭强制精度模式 ( 注意:该项即将被废弃);
  • builder.refittable = True / False:开启 / 关闭 refit 模式 ( 注意:该项即将被废弃);

你可能会比较好奇,可以看到上面很多的配置项即将被废弃,这不是说这些配置项不能用了,而是把它们移到了 BuilderConfig 中进行配置。需要注意的一点是,现在 NLP 里用的比较多的 Dynamic Shape 模式必须用 BuilderConfig 及其相关 API,那么紧接着我们来看 BuilderConfig。

2.3 构建 BuilderConfig

构建 BuilferConfig 网络元数据的选项,该项负责设置模型的一些参数,如是否开启 fp16 模式、int8 模式等。BuilderConfig 是建立在 Builder 基础之上的:

config = builder.create_builder_config()

来看 BuilderConfig 的常用成员:

  • config.max_workspace_size = 1 << 30:用于指定最大可用显存;
  • config.max_batch_size = ... :用于指定最大 batch,若没有配置该成员,则默认 Explicit batch 模式;
  • config.flag = ... :用于设置标志位,如 1 << int(trt.BuilderFlag.FP16) 或 1 << int(trt.BuilderFlag.INT8) ;
  • config.int8_calibrator = ... :int8 模式的校准表;
  • 等等更多高级用法

在以上的 等等更多高级用法 中还有如 set_tactic_sources (限制算法实现)、set_timing_cache (节约构建时间)、algorithm_selector (精确控制节点算法) 等。

2.4 构建 Network

构建 Network 计算图,是 最为核心的一个模块。Network 是网络的主体,使用 TensorRT API 搭建模型,并且标记网络的输入输出节点,以把各个计算节点织连成网状:

network = builder.create_network()
  • 常用参数:1 << int(tensorrt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH),使用 Explicit Batch 模式;
  • 常用方法:
  • network.add_input('oneTensor', trt.float32, (3, 4, 5)) 标记网络输入张量;
  • convLayer = network.add_convolution_nd(XXX) 添加各种网络层;
  • network.mark_output(convLayer.get_output(0)) 标记网络输出张量;

2.5 构建 SerializedNetwork

构建 SerializedNetwork,这是网络的 TensorRT 内部表示,这个地方的后续处理就有两种选择:(1) 可以用它生成可执行的推理引擎直接进行后续推理,这样就不用反序列化的过程;(2) 把它序列化保存为文件,方便以后重新读取和使用,这里就需要涉及到反序列化,这是工程部署常用的方式。来看看怎么构建 SerializedNetwork:

engineString = builder.build_serialized_network(network, config)

这样就完成了构建阶段,下面来看运行阶段。


3 运行阶段

运行阶段相比构建阶段,过程较为简洁明了。下面来看。

3.1 构建 Engine

构建 Engine,Engine 是推理引擎,是模型计算的核心,可以理解为可执行程序的代码段。来看 Engine 是怎么构建的:

engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)

3.2 构建 Context

构建 Context,主要用于计算的 GPU 上下文,类比 cpu 上的进程概念,是执行推理引擎的主体。来看 Context 是怎么构建的:

context = engine.create_execution_context()

3.3 构建 Buffer 相关

构建 Buffer 相关,主要涉及数据的准备,包括 Host 端和 Device 端,以及数据的拷贝,如执行推理前需要将 CPU 数据拷贝到 GPU 上,即 Host -> Device;当推理完成后,需要将结果数据从 GPU 拷出到 CPU,也即 Device -> Host。一些相关的示例代码如下:

cudart.cudaMemcpy(bufferD, bufferH, bufferSize, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)   # Host -> Device
cudart.cudaMemcpy(bufferH, bufferD, bufferSize, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)   # Device -> Host

3.4 构建 Execute

构建 Execute,Execute 调用计算核心执行计算的过程,看代码,很简单:

context.execute_v2(bufferD)

以上就完成了整个的 构建 与 运行过程,下面看个示例代码。


4 整流程构建示例代码

这里以构建单算子 ( Identity Layer ) 网络为例,进行代码展示:

## 构建期
logger = trt.logger(trt.Logger.ERROR)
if os.path.isfile(trtFile):
  with open(trtFile, 'rb') as f:
    engineString = f.read()
else:
  builder = trt.Builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
  profile = builder.create_optimization_profile()
  config = builder.create_builder_config()
  config.max_workspace_size = 1 << 30
  inputTensor = network.add_input('inputT0', trt.DataType.FLOAT, [-1, -1, -1])
  profile.set_shape(inputTensor.name, [1, 1, 1], [3, 4, 5], [6, 7, 8])
  config.add_optimization_profile(profile)
  identityLayer = network.add_identity(inputTensor)
  network.mark_output(identityLayer.get_output(0))
  engineString = builder.build_serialized_network(network, config)
  with open(trtFile, 'wb') as f:
    f.write(engineString)
## 运行期
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
dataShape = [3, 4, 5]
context.set_binding_shape(0, dataShape)
data = np.arange(np.prod(dataShape), dtype=np.float32).reshape(*dataShape)
bufferH = [np.ascontiguousarray(data.reshape(-1))]
bufferD = [cudart.cudaMalloc(bufferH[0].nbytes)[1]]
cudart.cudaMemcpy(bufferD[0], bufferH[0].ctypes.data, bufferH[0].nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice)   # Host -> Device
context.execute_v2(bufferD)
cudart.cudaMemcpy(bufferH[i].ctypes.data, bufferD[i], bufferH[i].nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost)   # Device -> Host
cudart.cudaFree(bufferD[0])


好了,以上分享了 TensorRT API 构建模型推理流程的方法。希望我的分享能对你的学习有一点帮助。


logo_show.gif

相关文章
|
3月前
|
云安全 人工智能 安全
Dify平台集成阿里云AI安全护栏,构建AI Runtime安全防线
阿里云 AI 安全护栏加入Dify平台,打造可信赖的 AI
2968 166
|
3月前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
1968 120
|
3月前
|
人工智能 Java Nacos
基于 Spring AI Alibaba + Nacos 的分布式 Multi-Agent 构建指南
本文将针对 Spring AI Alibaba + Nacos 的分布式多智能体构建方案展开介绍,同时结合 Demo 说明快速开发方法与实际效果。
3160 67
|
3月前
|
人工智能 自然语言处理 测试技术
从人工到AI驱动:天猫测试全流程自动化变革实践
天猫技术质量团队探索AI在测试全流程的落地应用,覆盖需求解析、用例生成、数据构造、执行验证等核心环节。通过AI+自然语言驱动,实现测试自动化、可溯化与可管理化,在用例生成、数据构造和执行校验中显著提效,推动测试体系从人工迈向AI全流程自动化,提升效率40%以上,用例覆盖超70%,并构建行业级知识资产沉淀平台。
从人工到AI驱动:天猫测试全流程自动化变革实践
|
3月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1136 6
|
3月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
436 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
3月前
|
SQL 人工智能 机器人
AI Agent新范式:FastGPT+MCP协议实现工具增强型智能体构建
FastGPT 与 MCP 协议结合,打造工具增强型智能体新范式。MCP 如同 AI 领域的“USB-C 接口”,实现数据与工具的标准化接入。FastGPT 可调用 MCP 工具集,动态执行复杂任务,亦可作为 MCP 服务器共享能力。二者融合推动 AI 应用向协作式、高复用、易集成的下一代智能体演进。
548 0
|
3月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1656 16
构建AI智能体:一、初识AI大模型与API调用
|
3月前
|
人工智能 安全 中间件
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,推出AgentScope-Java、AI MQ、Higress网关、Nacos注册中心及可观测体系,全面开源核心技术,构建分布式多Agent架构基座,助力企业级AI应用规模化落地,推动AI原生应用进入新范式。
759 26