极智AI | 讲解TensorRT Activation算子

本文涉及的产品
视觉智能开放平台,视频通用资源包5000点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 大家好,我是极智视界,本文讲解一下 TensorRT Activation 算子。

大家好,我是极智视界,本文讲解一下 TensorRT Activation 算子。

激活函数在神经网络中具有增加非线性、数据归一化 或 调整数据分布的作用。在分类、目标检测任务中都会有所涉及,如 relu、sigmoid、relu 等。这里讲解 TensorRT 中的 Activation 算子实现。


1 TensorRT Activation 算子介绍

TensorRT Activation 有丰富的内置的激活函数可直接调用,可以通过 trt.ActivationType 进行查看支持的激活函数,如下:

讲激活函数一定要附上这张图 (不是说 TensorRT 都支持,只是因为 生动形象):


2 TensorRT Activate 算子实现

在 TensorRT 中如何构建一个 Activate 算子呢,来看:

# 通过 add_activation 添加 activate 算子
activationLayer = network.add_activation(inputT0, trt.ActivationType.RELU)
# 重设激活函数类型
activationLayer.type = trt.ActivationType.CLIP     
# 部分激活函数需要 1 到 2 个参数,.aplha 和 .beta 默认值均为 0
activationLayer.alpha = -2 
activationLayer.beta = 2

来看一个实际的例子:

import numpy as np
from cuda import cudart
import tensorrt as trt
# 输入张量 NCHW
nIn, cIn, hIn, wIn = 1, 1, 3, 3  
# 输入数据
data = np.arange(-4, 5, dtype=np.float32).reshape(nIn, cIn, hIn, wIn) 
np.set_printoptions(precision=8, linewidth=200, suppress=True)
cudart.cudaDeviceSynchronize()
logger = trt.Logger(trt.Logger.ERROR)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
config = builder.create_builder_config()
inputT0 = network.add_input('inputT0', trt.DataType.FLOAT, (nIn, cIn, hIn, wIn))
#-------------------------------------------------------------------------------# 替换部分
# 这里演示使用 ReLU 激活函数
# 也可以替换成你想用的激活函数
activationLayer = network.add_activation(inputT0, trt.ActivationType.RELU)      
#-------------------------------------------------------------------------------# 替换部分
network.mark_output(activationLayer.get_output(0))
engineString = builder.build_serialized_network(network, config)
engine = trt.Runtime(logger).deserialize_cuda_engine(engineString)
context = engine.create_execution_context()
_, stream = cudart.cudaStreamCreate()
inputH0 = np.ascontiguousarray(data.reshape(-1))
outputH0 = np.empty(context.get_binding_shape(1), dtype=trt.nptype(engine.get_binding_dtype(1)))
_, inputD0 = cudart.cudaMallocAsync(inputH0.nbytes, stream)
_, outputD0 = cudart.cudaMallocAsync(outputH0.nbytes, stream)
cudart.cudaMemcpyAsync(inputD0, inputH0.ctypes.data, inputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
context.execute_async_v2([int(inputD0), int(outputD0)], stream)
cudart.cudaMemcpyAsync(outputH0.ctypes.data, outputD0, outputH0.nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost, stream)
cudart.cudaStreamSynchronize(stream)
print("inputH0 :", data.shape)
print(data)
print("outputH0:", outputH0.shape)
print(outputH0)
cudart.cudaStreamDestroy(stream)
cudart.cudaFree(inputD0)
cudart.cudaFree(outputD0)
  • 输入张量形状 (1, 1, 3, 3)

  • 输出张量形状 (1, 1, 3, 3)


好了,以上分享了 讲解 TensorRT Activation 算子,希望我的分享能对你的学习有一点帮助。


logo_show.gif

相关文章
|
机器学习/深度学习 人工智能 算法
极智AI | 谈谈多通道img2col的实现
大家好,我是极智视界,本文来谈谈 多通道img2col的实现。
291 1
|
人工智能 JSON API
极智AI | 三谈昇腾CANN量化
大家好,我是极智视界,本文介绍一下 三谈昇腾CANN量化。
222 1
|
人工智能 API Python
极智AI | 再谈昇腾CANN量化
大家好,我是极智视界,本文介绍一下 再谈昇腾CANN量化。
304 1
|
人工智能 自然语言处理 算法
极智AI | TensorRT API构建模型推理流程
大家好,我是极智视界,本文介绍一下 TensorRT API 构建模型推理流程。
743 1
|
人工智能 算法 数据格式
极智AI | 谈谈昇腾CANN量化
大家好,我是极智视界,本文介绍一下 谈谈昇腾CANN量化。
378 0
|
人工智能 缓存 NoSQL
【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。
|
30天前
|
机器学习/深度学习 人工智能 PyTorch
GPT为定制AI应用工程师转型第一周学习计划
本计划帮助开发者快速入门AI领域,首周涵盖AI基础理论、Python编程及PyTorch实战。前两天学习机器学习、深度学习与Transformer核心概念,掌握LLM工作原理。第三至四天快速掌握Python语法与Jupyter使用,完成基础编程任务。第五至七天学习PyTorch,动手训练MNIST手写识别模型,理解Tensor操作与神经网络构建。
97 0
|
2月前
|
人工智能 监控 数据可视化
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章