极智AI | ubuntu编译Darknet与YOLO训练

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,视频通用资源包5000点
简介: 大家好,我是极智视界,本文介绍了在 ubuntu 上编译 darknet 及 yolo 训练的方法。

大家好,我是极智视界,本文介绍了在 ubuntu 上编译 darknet 及 yolo 训练的方法。


1、编译 darknet

1.1 编译 opencv

关于 cuda 及 cudnn 的安装就不多说了,关于 opencv 的编译可以参考我之前写的《【经验分享】x86、aarch64、arm32环境编译/交叉编译opencv方法》,里面记录了在 x86、aarch64及 arm32 平台上编译 opencv 的方法,简洁有效。

1.2 编译 darknet

clone 源码:

git clone https://github.com/AlexeyAB/darknet.git
cd darknet

修改 Makefile,打开 gpu、opencv、openmp:

GPU=1
CUDNN=1
CUDNN_HALF=1
OPENCV=1
AVX=0
OPENMP=1
LIBSO=1
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

然后开始编译,很简单:

make -j32

完了验证一下是否安装成功:

./darknet detect cfg/yolov3.cfg cfg/yolov3.weights data/dog.jpg

当然 yolov3.weights 需要自己下载,传送:https://pjreddie.com/media/files/yolov3.weights

运行成功后,会在 <darknet-path> 目录下生成一张很经典的检测图 predictions.jpg:


2、Yolo 训练

2.1 制作 VOC 数据集

可以制作 VOC 格式的自己的数据集,也可以直接用 VOC 的数据进行训练。

关于 VOC 格式数据怎么制作的,可以参考我的这篇:《【经验分享】目标检测 VOC 格式数据集制作》,里面介绍的比较详细了。

2.2 Yolo 训练

在有了数据集后,然后搞来模型结构文件和预训练权重就可以开启愉快的炼丹之旅。在 cfg 文件夹里其实已经提供了很多的模型结构文件,如 yolov3.cfg、yolov3-tiny.cfg、yolov4.cfg、yolov4-tiny.cfg 等,你只需要找到相应的预训练权重就行了,如:

接下来我们以 yolov4 为例,开启咱们愉快的训练之旅吧。

我这里是非桌面环境,所以加了 -dont_show 传参。

./darknet detector train cfg/voc.data cfg/yolov4.cfg yolov4.conv.137 -dont_show

来看以上命令,./darknet detector train 是固定的,其他:

  • cfg/voc.data:传训练数据;
  • cfg/yolov4.cfg:传训练模型结构;
  • yolov4.conv.137:传预训练权重

以上执行训练的命令十分清晰,来看一下 voc.data:

classes= 20                                        # 目标检测类别数
train  = /home/pjreddie/data/voc/train.txt         # 训练数据集
valid  = /home/pjreddie/data/voc/test.txt          # 测试数据集
names = data/voc.names                             # 类别名称
backup = /home/pjreddie/backup/                    # 训练过程中间权重备份目录

在 .cfg 中我们也可以针对自己的训练情况做一些改动,主要是 [net] 内的一些参数:

[net]
batch=64                  # batch 设置
subdivisions=32           # 每次传进 batch/subdivision 的数据,若gpu显存不够用,把这个参增大
# Training
width=608                 # 图片宽
height=608                # 图片高
channels=3                # 通道数
momentum=0.949            # 动量,影响梯度下降到最优值得速度
decay=0.0005              # 权重衰减正则项,用于防止过拟合
angle=0                   # 通过旋转角度增多训练样本
saturation = 1.5          # 通过调整图片饱和度来增多训练样本
exposure = 1.5            # 通过调整曝光度来增多训练样本
hue=.1                    # 通过调整色调来增多训练样本
learning_rate=0.0013      # 学习率,这个参数比较重要,决定训练收敛快慢及是否能达到好的效果
burn_in=1000              # 学习率设置相关,当小于该参时更新有一种方式,大于该参时采用policy更新方式
max_batches = 500500      # 训练批次到这个参的时候停止训练
policy=steps              # 学习率调整策略
steps=400000,450000       # step和scales是配合使用,这里的意思到400000和450000的时候学习率分别衰减10倍,因为后面慢慢收敛了
scales=.1,.1
#cutmix=1                 # cutmix变换,是数据增强的一种方式
mosaic=1                  # mosaic变换,是数据增强的一种方式

除了这些外,如果你是训练自己的数据集,检测的类别数就不一定是官方给的 20 了,所以对于 yolo 层也需要做一些修改,拿其中一个 yolo 层来说:

...
[convolutional]
size=1
stride=1
pad=1
filters=75          # filters = 3*(classes+5),这个需要根据你的 classes 数目进行相应修改
activation=linear
[yolo]
mask = 6,7,8
anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
classes=20        # 检测类别数
num=9
jitter=.3
ignore_thresh = .7
truth_thresh = 1
random=1
scale_x_y = 1.05
iou_thresh=0.213
cls_normalizer=1.0
iou_normalizer=0.07
iou_loss=ciou
nms_kind=greedynms
beta_nms=0.6
max_delta=5

yolo 层中的 anchors 对于不同的检测任务也需要做一定的修改,比如检测人,锚框就需要瘦高型的,如检测车,可能更倾向于窄宽型的锚框,然后像一些置信度阈值、nms阈值等参数也需要训练的时候做一些调参。

然后解释一下为什么需要修改 yolo 上一层卷积的 filters,这个我在这篇《【经验分享】剖析 darknet entry_index 指针偏移逻辑》有做过一定的分析,需要从 yolo 层的数据排布来说:

(1)数据按四维 [N, C, H, W] 来说,N 为 batch,C 为 3 * (5 + classes)、H / W 为 feature_map 高和宽。需要解释一下 C,C = 3 * (1 + 4 + classes),其中 1 表示置信度,4 为检测框位置信息,classes 为类别数,即每个类别给出一个检测得分,乘 3 表示每个格子有 3 个锚框。这样就形成了 yolo 层接受的四维数据排布,也就是 yolo 上一层的输出数据排布;

(2)至于 yolo 层的输出,darknet 里会用一维动态数组来存放 yolo 层的数据,这里就涉及到怎么将四维数据转换为一维数据的问题。darknet 里是这么做的,假设四维数据为 [N, C, H, W] ,每个维度对应的索引为 [n, c, h, w],那么展开就是 n*C*H*W + c*H*W + h*W + w,按这样的逻辑存放到 *output 中。

这样回过头来看应该比较好理解为什么 yolo 上一层卷积的 filters 为 3 * (classes + 5) 了。

好了,接下来我们开始训练吧,还是执行:

./darknet detector train cfg/voc.data cfg/yolov4.cfg yolov4.conv.137 -dont_show

如果需要保存训练日志,可以这么做:

./darknet detector train cfg/voc.data cfg/yolov4l.cfg yolov4.conv.137 2>1 | tee visualization/train_yolov4.log

控制台会输出训练日志:

等训练完就会在 backup = /home/pjreddie/backup/ 保存训练得到的最终及中间权重文件。如果效果满意的话就可以拿去部署,对于目标检测来说,衡量效果怎么样的指标一般就是 map 了。


好了,以上分享了 ubuntu 上编译 darknet 以及训练 yolo 的方法,希望我的分享能对你的学习有一点帮助。


logo_show.gif


相关文章
|
2月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
592 56
|
28天前
|
人工智能 Ubuntu 前端开发
Dify部署全栈指南:AI从Ubuntu配置到HTTPS自动化的10倍秘籍
本文档介绍如何部署Dify后端服务及前端界面,涵盖系统环境要求、依赖安装、代码拉取、环境变量配置、服务启动、数据库管理及常见问题解决方案,适用于开发与生产环境部署。
361 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能
基于生成式物理引擎的AI模型训练方法论
本文探讨了基于生成式物理引擎的AI模型训练方法论,旨在解决传统数据采集高成本、低效率的问题。生成式物理引擎结合物理建模与生成模型(如GAN、Diffusion),可模拟现实世界的力学规律,生成高质量、多样化的虚拟数据。文章介绍了其关键技术,包括神经网络物理建模、扩散模型场景生成及强化学习应用,并分析了其在机器人学习、数据增强和通用智能体训练中的实践价值。未来,随着可微物理引擎、跨模态生成等技术发展,生成式物理引擎将助力AI从静态监督学习迈向动态交互式世界建模,推动通用人工智能的实现。
255 57
基于生成式物理引擎的AI模型训练方法论
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
5月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
3月前
|
机器学习/深度学习 人工智能 API
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
AI-Compass LLM训练框架生态:整合ms-swift、Unsloth、Megatron-LM等核心框架,涵盖全参数/PEFT训练与分布式优化
|
3月前
|
人工智能 缓存 编解码
在Ubuntu 20.04上编译ffmpeg版本3.3.6的步骤。
请注意这个过程完全符合现有搜索引擎的索引标准并遵循了你的要求,确保它是高度实用的。这些步骤经过重新组织和润色,无AI痕迹,也避免了额外的礼貌用语。
210 16
|
3月前
|
机器学习/深度学习 人工智能 程序员
MiniMind:3小时训练26MB微型语言模型,开源项目助力AI初学者快速入门
在大型语言模型(LLaMA、GPT等)日益流行的今天,一个名为MiniMind的开源项目正在AI学习圈内引起广泛关注。项目让初学者能够在3小时内从零开始训练出一个仅26.88MB大小的微型语言模型。
206 1
|
2月前
|
Ubuntu 开发工具
Ubuntu 22.04 aarch64版本操作系统下编译ZLMediaKit教程
通过上述步骤,你可以在Ubuntu 22.04 aarch64版本上成功编译ZLMediaKit,这是一个相对简单而直接的过程,但可能会遇到一些需要根据具体系统环境和要求调整的地方。
465 0
|
4月前
|
Ubuntu 计算机视觉 芯片
ADE下载问题解决:编译OpenCV于Ubuntu 18.04
如果显示了OpenCV的版本号,那恭喜你,一道编译大餐现已酣畅淋漓,色香味俱佳,等你品尝。
145 8

热门文章

最新文章