金融机器学习方法:决策树与随机森林

简介: 金融机器学习方法:决策树与随机森林

决策树和随机森林都是监督学习的算法,常用于分类和回归任务。本文将简要介绍这两种方法,以及它们之间的联系与区别。

1.决策树

1.1  什么是决策树?

决策树是一个树状模型,用于表示决策过程或概率事件过程。在每一个内部节点上,它都会对某个属性进行测试,根据测试结果,进一步沿着分支进行决策,直到达到叶节点,此时得到一个决策结果。

1.2 决策树的优点与缺点

优点:

  • 直观易于理解,模型可以可视化。
  • 需要的数据预处理较少(例如,不需要特征标准化)。
  • 能够处理数字和分类数据。

缺点:

  • 容易产生过拟合,特别是当树很深时。
  • 对于连续属性,决策树可能不太稳定。
  • 可能不总是产生最优的树。

2.随机森林

2.1 什么是随机森林?

随机森林是一个包含多个决策树的集合,用于对新的数据点进行预测。通过每棵树产生的预测结果进行“投票”或平均,来确定随机森林的最终预测。

2.2 随机森林的优点与缺点

优点:

  • 降低了过拟合的风险:多个决策树的集成学习方式可以减少单个决策树的过拟合现象。
  • 具有很高的准确性。
  • 能够评估哪些特征对于预测最重要。

缺点:

  • 训练时间可能会比单一决策树长。
  • 模型更难以解释,因为它不再是一个简单的决策树。

3.决策树与随机森林的联系与区别

  • 联系:随机森林是基于决策树的算法。其基本单位就是决策树。
  • 区别:随机森林使用了多棵决策树,并且在构建这些决策树时会随机选择数据样本和特征,这样产生的模型差异性更大,能够更好地泛化到未知数据。而单一决策树则可能更容易受到数据中噪声的影响。

4.案例分析

我们将使用 Iris 数据集,这是机器学习中经常使用的一个数据集。它包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。目标是预测每个样本的种类:setosa、versicolor或virginica。

4.1 使用决策树和随机森林预测

import numpy as np
# 加载数据
iris = load_iris()
X = iris.data + np.random.normal(0, 0.5, iris.data.shape)  # 添加噪音
y = iris.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 使用决策树进行训练,限制最大深度
clf_tree = DecisionTreeClassifier(max_depth=3, random_state=42)
clf_tree.fit(X_train, y_train)
y_pred_tree = clf_tree.predict(X_test)
print("决策树预测准确率:", accuracy_score(y_test, y_pred_tree))
# 使用随机森林进行训练,减少估计器的数量
clf_rf = RandomForestClassifier(n_estimators=10, random_state=42)
clf_rf.fit(X_train, y_train)
y_pred_rf = clf_rf.predict(X_test)
print("随机森林预测准确率:", accuracy_score(y_test, y_pred_rf))

预测结果;

决策树预测准确率: 0.7666666666666667

随机森林预测准确率: 0.9

4.2绘制ROC曲线

import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
from sklearn.preprocessing import label_binarize
# 为了绘制ROC曲线,我们需要将标签二值化
y_bin = label_binarize(y, classes=[0, 1, 2])
n_classes = y_bin.shape[1]
# 划分数据集
X_train, X_test, y_train_bin, y_test_bin = train_test_split(X, y_bin, test_size=0.2, random_state=42)
# 使用随机森林进行训练并预测概率
clf_rf = RandomForestClassifier(n_estimators=10, random_state=42)
clf_rf.fit(X_train, y_train_bin)
y_score_rf = clf_rf.predict_proba(X_test)
# 使用决策树进行训练并预测概率
clf_tree = DecisionTreeClassifier(max_depth=3, random_state=42)
clf_tree.fit(X_train, y_train_bin)
y_score_tree = clf_tree.predict_proba(X_test)
# 绘制ROC曲线
plt.figure(figsize=(10, 8))
for i in range(n_classes):
    fpr_rf, tpr_rf, _ = roc_curve(y_test_bin[:, i], y_score_rf[i][:, 1])
    roc_auc_rf = auc(fpr_rf, tpr_rf)
    fpr_tree, tpr_tree, _ = roc_curve(y_test_bin[:, i], y_score_tree[i][:, 1])
    roc_auc_tree = auc(fpr_tree, tpr_tree)
    plt.plot(fpr_rf, tpr_rf, color='darkorange', lw=2, label=f'ROC curve of class {i} (RF area = {roc_auc_rf:.2f})')
    plt.plot(fpr_tree, tpr_tree, color='blue', lw=2, label=f'ROC curve of class {i} (Tree area = {roc_auc_tree:.2f})')
plt.plot([0, 1], [0, 1], 'k--', lw=2)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic for Iris dataset (with noise)')
plt.legend(loc="lower right")
plt.show()

结果图:

通过上述代码,我们可以对比决策树和随机森林在鸢尾花数据集上的表现。通常,随机森林的预测准确率会优于单一决策树,因为它融合了多棵树的预测,减少了过拟合的风险。不过,特定的数据集和设置可能会导致两者的差异变大或变小。为了更准确地评估模型性能,还可以使用交叉验证等技术,并进行多次实验来获得平均结果。


目录
相关文章
|
8天前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
31 10
|
16天前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
25天前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
26天前
|
机器学习/深度学习 算法 Python
从菜鸟到大师:一棵决策树如何引领你的Python机器学习之旅
【9月更文挑战第9天】在数据科学领域,机器学习如同璀璨明珠,吸引无数探索者。尤其对于新手而言,纷繁复杂的算法常让人感到迷茫。本文将以决策树为切入点,带您从Python机器学习的新手逐步成长为高手。决策树以其直观易懂的特点成为入门利器。通过构建决策树分类器并应用到鸢尾花数据集上,我们展示了其基本用法及效果。掌握决策树后,还需深入理解其工作原理,调整参数,并探索集成学习方法,最终将所学应用于实际问题解决中,不断提升技能。愿这棵智慧之树助您成为独当一面的大师。
25 3
|
28天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【9月更文挑战第7天】当我们身处数据海洋,如何提炼出有价值的洞察?决策树作为一种直观且强大的机器学习算法,宛如智慧之树,引领我们在繁复的数据中找到答案。通过Python的scikit-learn库,我们可以轻松实现决策树模型,对数据进行分类或回归分析。本教程将带领大家从零开始,通过实际案例掌握决策树的原理与应用,探索数据中的秘密。
30 1
|
1月前
|
机器学习/深度学习 算法 搜索推荐
机器学习方法之强化学习
强化学习是一种机器学习方法,旨在通过与环境的交互来学习如何做出决策,以最大化累积的奖励。
28 4
|
1月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
2月前
|
机器学习/深度学习 算法 自动驾驶
揭秘机器学习模型的决策之道
【8月更文挑战第22天】本文将深入浅出地探讨机器学习模型如何从数据中学习并做出预测。我们将一起探索模型背后的数学原理,了解它们是如何被训练以及如何对新数据进行预测的。文章旨在为初学者提供一个清晰的机器学习过程概述,并启发读者思考如何在自己的项目中应用这些技术。
|
2月前
|
机器学习/深度学习 算法 Python
【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
文章讨论了决策树的剪枝技术,包括预剪枝和后剪枝的概念、方法以及各自的优缺点。
47 2
下一篇
无影云桌面