【云计算与大数据技术】Bloom Filter、LSM树、Merkle哈希树、Cuckoo哈希等数据结构的讲解(图文解释 超详细)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 【云计算与大数据技术】Bloom Filter、LSM树、Merkle哈希树、Cuckoo哈希等数据结构的讲解(图文解释 超详细)

一、重要数据结构与算法

分布式存储系统中存储大量的数据,同时需要支持大量的上层读/写操作,为了实现高吞吐量,设计和实现一个良好的数据结构能起到相当大的作用

这是以下三个数据库使用的数据结构,一个良好的数据结构对于分布式系统来说有着很大的作用。

NoSQL – LSM Tree

MemC3 – Cuckoo Hash

HBase – BloomFilter

二、Bloom Filter

Bloom Filter用于在海量数据中快速查找给定的数据是否在某个集合内

Bloom Filter的原理是当一个元素被加入集合时,通过k 个散列函数将这个元素映射成一个位数组中的k 个点,把它们置为1

检索时,用户只要看看这些点是不是都是1 就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是 1,则被检元素很可能在

Bloom Filter的高效是有一定代价的,在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合,因此Bloom Filter不适合那些零错误的应用场合,在能容忍低错误的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省

三、LSM树

LSM 树和 B+树相比,LSM 树牺牲了部分读性能,用来大幅度提高写性能

把一棵大树拆分成n棵小树,它首先写入内存中,随着小树越来越大,内存中的小树会flush到磁盘中,磁盘中的树定期可以做 merge操作

插入操作首先会作用于内存,由于内存中的树不会很大,因此速度快

合并操作会顺序写入一个或多个磁盘页,比随机写入快得多

四、Merkle哈希树

数据分成小的数据块,有相应的哈希和它对应

往上走,把相邻的两个哈希合并成一个字符串,然后运算这个字符串的哈希,这样每两个哈希组合得到了一个“子哈希”

Merkle Tree明显的一个好处是可以单独拿出一个分支来对部分数据进行校验

五、Cuckoo哈希

Cuckoo 哈希是一种解决 hash 冲突的方法,其目的是使用简易 的 hash 函数来提高 Hash Table 的利用率

使用两个 hash 函数来处理碰撞,从而每个 key 都对应到两个位置

对 key 值哈希,生成两个 hash key值 ,hash k1 和 hash k2 ,如果对应的两个位置上有一个为空,直接把 key 插入即可

否则,任选一个位置,把 key 值插入,把已经在那个位置的 key 值踢出

其查找思路与一般哈希一致,Cuckoo Hash在读多写少的负载情况下能够快速实现数据的查找

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
1月前
|
存储 人工智能 大数据
云栖2025|阿里云开源大数据发布新一代“湖流一体”数智平台及全栈技术升级
阿里云在云栖大会发布“湖流一体”数智平台,推出DLF-3.0全模态湖仓、实时计算Flink版升级及EMR系列新品,融合实时化、多模态、智能化技术,打造AI时代高效开放的数据底座,赋能企业数字化转型。
527 0
|
3月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
361 4
|
4月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
30天前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
SQL 分布式计算 大数据
我与ODPS的十年技术共生之路
ODPS十年相伴,从初识的分布式计算到共生进化,突破架构边界,推动数据价值深挖。其湖仓一体、隐私计算与Serverless能力,助力企业降本增效,赋能政务与商业场景,成为数字化转型的“数字神经系统”。
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
4月前
|
数据采集 自然语言处理 分布式计算
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
大数据岗位技能需求挖掘:Python爬虫与NLP技术结合
|
4月前
|
存储 分布式计算 算法
Java 大视界 -- Java 大数据在智能教育在线考试监考与作弊检测中的技术创新(193)
本文探讨了Java大数据技术在智能教育在线考试监考与作弊检测中的创新应用。随着在线考试的普及,作弊问题日益突出,传统监考方式难以应对。通过Java大数据技术,可实现考生行为分析、图像识别等多维度监控,提升作弊检测的准确性与效率。结合Hadoop与Spark等技术,系统能实时处理海量数据,构建智能监考体系,保障考试公平性,推动教育评价体系的数字化转型。
|
4月前
|
SQL 缓存 监控
大数据之路:阿里巴巴大数据实践——实时技术与数据服务
实时技术通过流式架构实现数据的实时采集、处理与存储,支持高并发、低延迟的数据服务。架构涵盖数据分层、多流关联,结合Flink、Kafka等技术实现高效流计算。数据服务提供统一接口,支持SQL查询、数据推送与定时任务,保障数据实时性与可靠性。

热门文章

最新文章