【计算机视觉】一、多任务深度学习网络的概念及在自动驾驶中的应用讲解(图文解释 超详细)

简介: 【计算机视觉】一、多任务深度学习网络的概念及在自动驾驶中的应用讲解(图文解释 超详细)

觉得有帮助麻烦点赞关注收藏~~~

一、自动驾驶中的深度学习网络

视频分析领域的四大任务是:图像分类 目标检测 目标跟踪和图像分割,可以看到,基于深度学习的图像处理方法需要庞大的计算资源给予支持,在实际项目中,选择价格便宜且稳定性好的硬件设备是算法设计的重要环节,以实际项目为例,下图给出了自动驾驶环境感知这一实际问题拆解出的图像处理任务,自动驾驶技术的核心在于替代驾驶员完成对复杂动态场景的感知并作出正确的判断,即通过搭载的多种传感器获取与驾驶相关的有效信息,包括机动车,行人,非机动车等等。为了感知上述目标的状态,需要经过图像分类,目标检测和图像分割几个步骤来组合完成,如果将每个任务建立一个深度学习模型,再把所有的任务并行起来,计算量过于庞大,这将导致项目预算大幅增加,硬件服务器功耗过大,会产生安装条件受限等问题,实际项目在环境感知过程需要达到响应速度快,精度高,任务多等要求,而对于传统的视觉感知框架而言,难以实现短时间内同时完成多类的图像分析任务,所以使用一个深度神经网络模型实现交通场景中多任务处理是更为合理的方式,通过将分类、检测和分割这三个任务并入统一的编码器-解码器架构来完成,多类任务可以通过一个深度神经网络的前向传播完成,这样可以减少计算参数,从而提高系统的检测速度,多任务深度学习网络可以提高图像处理系统的速度同时可以降低图像处理算法对硬件计算能力以及存储能力的需求

 

二、多任务深度学习网络的概念

无论是图像识别,目标检测还是图像分割,所使用的基础网络都是一致的,这些基础网络的目的是提取不同的任务的不同图像特征,自动驾驶环境感知多任务深度学习网络如下图所示,它由三部分组成:图像特征提起部分,目标检测与识别部分,图像分割部分

至于多任务深度学习网络的分类以及详细介绍包括并行式和级联式将在下一篇博客中进行讲解

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
6天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
19 3
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在计算机视觉中的突破与未来趋势###
【10月更文挑战第21天】 近年来,深度学习技术极大地推动了计算机视觉领域的发展。本文将探讨深度学习在图像识别、目标检测和图像生成等方面的最新进展,分析其背后的关键技术和算法,并展望未来的发展趋势和应用前景。通过这些探讨,希望能够为相关领域的研究者和从业者提供有价值的参考。 ###
14 4
|
21天前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
45 1
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之任务序列中的快速适应
基于深度学习的任务序列中的快速适应是指模型在接连处理不同任务时,能够迅速调整和优化自身以适应新任务的能力。这种能力在动态环境和多任务学习中尤为重要,旨在减少训练时间和资源需求。
32 3
|
13天前
|
供应链 网络协议 数据安全/隐私保护
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习与计算机视觉的结合:技术趋势与应用
深度学习与计算机视觉的结合:技术趋势与应用
129 9
|
2月前
|
存储 安全 数据处理
探索未来网络:量子互联网的概念与前景
本文将探讨量子互联网的基本概念、技术原理以及其潜在的应用前景。我们将从传统互联网的局限性出发,逐步引入量子力学的基本知识,解释量子纠缠和量子叠加的独特性质如何赋予量子互联网以全新的通信能力和安全性。最后,我们将讨论量子互联网在金融、医疗、国家安全等领域的应用潜力,并对其技术挑战与未来发展进行展望。
48 1
|
2月前
|
机器学习/深度学习 人工智能 算法
操作系统的未来:从多任务到深度学习的演变之路
本文将探讨操作系统如何从处理简单多任务发展到支持复杂的深度学习任务。我们将分析现代操作系统面临的新挑战,以及它们如何适应人工智能和大数据时代的要求。文章不仅回顾过去,也展望未来,思考操作系统在技术演进中的角色和方向。
54 3
|
3月前
|
机器学习/深度学习 算法 前端开发
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
使用Numpy实现梯度下降算法来构建和训练线性模型进行波士顿房价预测的过程,并提供了模型保存的方法,同时提出了几个关于梯度计算、参数更新和神经网络训练的作业题目。
 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
|
2月前
|
存储 安全 网络安全
[收藏]网络安全知识:网络安全概念、内容和主要技术纵览
[收藏]网络安全知识:网络安全概念、内容和主要技术纵览