深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)

简介: 深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)

需要源码和环境搭建请点赞关注收藏后评论区留下QQ~~~

一、核心思想

针对DQN中出现的高估问题,有人提出深度双Q网络算法(DDQN),该算法是将强化学习中的双Q学习应用于DQN中。在强化学习中,双Q学习的提出能在一定程度上缓解Q学习带来的过高估计问题。

DDQN的主要思想是在目标值计算时将动作的选择和评估分离,在更新过程中,利用两个网络来学习两组权重,分别是预测网络的权重W和目标网络的权重W',在DQN中,动作选择和评估都是通过目标网络来实现的,而在DDQN中,计算目标Q值时,采取目标网络获取最优动作,再通过预测网络估计该最优动作的目标Q值,这样就可以将最优动作选额和动作值函数估计分离,采用不用的样本保证独立性

二、允许结果与分析

本节实验在Asterix游戏上,通过控制参数变量对DQN,DDQN算法进行性能对比从而验证了在一定程度上,DDQN算法可以缓解DQN算法的高估问题,DDQN需要两个不同的参数网络,每1000步后预测预测网络的参数同步更新给目标网络,实验设有最大能容纳1000000记录的缓冲池,每个Atari游戏,DDQN算法训练1000000时间步

实战结果如下图所示,图中的DDQN算法最后收敛回报明显大于DQN,并且在实验过程中,可以发现DQN算法容易陷入局部的情况,其问题主要在于Q-Learning中的最大化操作,Agent在选择动作时每次都取最大Q值得动作,对于真实的策略来说,在给定的状态下并不是每次都选择Q值最大的动作,因为一般真实的策略都是随机性策略,所以在这里目标值直接选择动作最大的Q值往往会导致目标值高于真实值

为了解决值函数高估计的问题,DDQN算法将动作的选择和动作的评估分别用不同的值函数来实现,结果表明DDQN能够估计出更准确的Q值,在一些Atari2600游戏中可获得更稳定有效的策略

三、代码

部分源码如下

import gym, random, pickle, os.path, math, glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import pdb
from atari_wrappers import make_atari, wrap_deepmind,LazyFrames
    def __init__(self, in_channels=4, num_actions=5):
       nnels: number of channel of input.
                i.e The number of most recent frames stacked together as describe in the paper
            num_actions: number of action-value to output, one-to-one correspondence to action in game.
        """
        super(DQN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=8, stride=4)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
        self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
        self.fc4 = nn.Linear(7 * 7 * 64, 512)
        self.fc5 = nn.Linear(512, num_actions)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = F.relu(self.fc4(x.view(x.size(0), -1)))
        return self.fc5(x)
class Memory_Buffer(object):
    def __init__(self, memory_size=1000):
        self.buffer = []
        self.memory_size = memory_size
        self.next_idx = 0
    def push(self, state, action, reward, next_state, done):
        data = (state, action, reward, next_state, done)
        if len(self.buffer) <= self.memory_size: # buffer not full
            self.buffer.append(data)
        else: # buffer is full
            self.buffer[self.next_idx] = data
        self.next_idx = (self.next_idx + 1) % self.memory_size
    def sample(self, batch_size):
        states, actions, rewards, next_states, dones = [], [], [], [], []
        for i in range(batch_size):
            idx = random.randint(0, self.size() - 1)
            data = self.buffer[idx]
            state, action, reward, next_state, done= data
            states.append(state)
            actions.append(action)
            rewards.append(reward)
            next_states.append(next_state)
            dones.append(done)
        return np.concatenate(states), actions, rewards, np.concatenate(next_states), dones
    def size(self):
        return len(self.buffer)
class DDQNAgent:
    def __init__(self, in_channels = 1, action_space = [], USE_CUDA = False, memory_size = 10000, epsilon  = 1, lr = 1e-4):
        self.epsilon = epsilon
        self.action_space = action_space
        self.memory_buffer = Memory_Buffer(memory_size)
        self.DQN = DQN(in_channels = in_channels, num_actions = action_space.n)
        self.DQN_target = DQN(in_channels = in_channels, num_actions = action_space.n)
        self.DQN_target.load_state_dict(self.DQN.state_dict())
        self.USE_CUDA = USE_CUDA
        if USE_CUDA:
            self.DQN = self.DQN.to(device)
            self.DQN_target = self.DQN_target.to(device)
        self.optimizer = optim.RMSprop(self.DQN.parameters(),lr=lr, eps=0.001, alpha=0.95)
    def observe(self, lazyframe):
        # from Lazy frame to tensor
        state =  torch.from_numpy(lazyframe._force().transpose(2,0,1)[None]/255).float()
        if self.USE_CUDA:
            state = state.to(device)
        return state
    def value(self, state):
        q_values = self.DQN(state)
        return q_values
    def act(self, state, epsilon = None):
        """
        sample actions with epsilon-greedy policy
        recap: with p = epsilon pick random action, else pick action with highest Q(s,a)
        """
        if epsilon is None: epsilon = self.epsilon
        q_values = self.value(state).cpu().detach().numpy()
        if random.random()<epsilon:
            aciton = random.randrange(self.action_space.n)
        else:
            aciton = q_values.argmax(1)[0]
        return aciton
    def compute_td_loss(self, states, actions, rewards, next_states, is_done, gamma=0.99):
        """ Compute td loss using torch operations only. Use the formula above. """
        actions = torch.tensor(actions).long()    # shape: [batch_size]
        rewards = torch.tensor(rewards, dtype =torch.float)  # shape: [batch_size]
        is_done = torch.tensor(is_done, dtype = torch.uint8)  # shape: [batch_size]
        if self.USE_CUDA:
            actions = actions.to(device)
            rewards = rewards.to(device)
            is_done = is_done.to(device)
        # get q-values for all actions in current states
        predicted_qvalues = self.DQN(states)
        # select q-values for chosen actions
        predicted_qvalues_for_actions = predicted_qvalues[
          range(states.shape[0]), actions
        ]
        # compute q-values for all actions in next states
        ## Where DDQN is different from DQN
        predicted_next_qvalues_current = self.DQN(next_states)
        predicted_next_qvalues_target = self.DQN_target(next_states)
        # compute V*(next_states) using predicted next q-values
        next_state_values =  predicted_next_qvalues_target.gather(1, torch.max(predicted_next_qvalues_current, 1)[1].unsqueeze(1)).squeeze(1)
        # compute "target q-values" for loss - it's what's inside square parentheses in the above formula.
        target_qvalues_for_actions = rewards + gamma *next_state_values
        # at the last state we shall use simplified formula: Q(s,a) = r(s,a) since s' doesn't exist
        target_qvalues_for_actions = torch.where(
            is_done, rewards, target_qvalues_for_actions)
        # mean squared error loss to minimize
        #loss = torch.mean((predicted_qvalues_for_actions -
        #                   target_qvalues_for_actions.detach()) ** 2)
        loss = F.smooth_l1_loss(predicted_qvalues_for_actions, target_qvalues_for_actions.detach())
        return loss
    def sample_from_buffer(self, batch_size):
        states, actions, rewards, next_states, dones = [], [], [], [], []
        for i in range(batch_size):
            idx = random.randint(0, self.memory_buffer.size() - 1)
            data = self.memory_buffer.buffer[idx]
            frame, action, reward, next_frame, done= data
            states.append(self.observe(frame))
            actions.append(action)
            rewards.append(reward)
            next_states.append(self.observe(next_frame))
            dones.append(done)
        return torch.cat(states), actions, rewards, torch.cat(next_states), dones
    def learn_from_experience(self, batch_size):
        if self.memory_buffer.size() > batch_size:
            states, actions, rewards, next_states, dones = self.sample_from_buffer(batch_size)
            td_loss = self.compute_td_loss(states, actions, rewards, next_states, dones)
            self.optimizer.zero_grad()
            td_loss.backward()
            for param in self.DQN.parameters():
                param.grad.data.clamp_(-1, 1)
            self.optimizer.step()
            return(td_loss.item())
        else:
            return(0)
def moving_average(a, n=3) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n
def plot_training(frame_idx, rewards, losses):
    clear_output(True)
    plt.figure(figsize=(20,5))
    plt.subplot(131)
    plt.title('frame %s. reward: %s' % (frame_idx, np.mean(rewards[-100:])))
    plt.plot(moving_average(rewards,20))
    plt.subplot(132)
    plt.title('loss, average on 100 stpes')
    plt.plot(moving_average(losses, 100),linewidth=0.2)
    plt.show()
# if __name__ == '__main__':
# Training DQN in PongNoFrameskip-v4
env = make_atari('PongNoFrameskip-v4')
env = wrap_deepmind(env, scale = False, frame_stack=True)
gamma = 0.99
epsilon_max = 1
epsilon_min = 0.01
eps_decay = 30000
frames = 1000000
USE_CUDA = True
learning_rate = 2e-4
max_buff = 100000
update_tar_interval = 1000
batch_size = 32
print_interval = 1000
log_interval = 1000
learning_start = 10000
win_reward = 18     # Pong-v4
win_break = True
action_space = env.action_space
action_dim = env.action_space.n
state_dim = env.observation_space.shape[0]
state_channel = env.observation_space.shape[2]
agent = DDQNAgent(in_channels = state_channel, action_space= action_space, USE_CUDA = USE_CUDA, lr = learning_rate)
#frame = env.reset()
episode_reward = 0
all_rewards = []
losses = []
episode_num = 0
is_win = False
# tensorboard
summary_writer = SummaryWriter(log_dir = "DDQN", comment= "good_makeatari")
# e-greedy decay
epsilon_by_frame = lambda frame_idx: epsilon_min + (epsilon_max - epsilon_min) * math.exp(
            -1. * frame_idx / eps_decay)
# plt.plot([epsilon_by_frame(i) for i in range(10000)])
for i in range(frames):
    epsilon = epsilon_by_frame(i)
    #state_tensor = agent.observe(frame)
    #action = agent.act(state_tensor, epsilon)
    #next_frame, reward, done, _ = env.step(action)
    #episode_reward += reward
    #agent.memory_buffer.push(frame, action, reward, next_frame, done)
    #frame = next_frame
    loss = 0
    if agent.memory_buffer.size() >= learning_start:
        loss = agent.learn_from_experience(batch_size)
        losses.append(loss)
    if i % print_interval == 0:
        print("frames: %5d, reward: %5f, loss: %4f, epsilon: %5f, episode: %4d" % (i, np.mean(all_rewards[-10:]), loss, epsilon, episode_num))
        summary_writer.add_scalar("Temporal Difference Loss", loss, i)
        summary_writer.add_scalar("Mean Reward", np.mean(all_rewards[-10:]), i)
        summary_writer.add_scalar("Epsilon", epsilon, i)
    if iQN_dict.pth.tar")
plot_training(i, all_rewards, losses)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 存储 算法
淘宝图片搜索接口开发实战:从 CNN 特征提取到商品匹配(附避坑手册 + 可复用代码)
本文详解淘宝图片搜索接口开发全流程,涵盖CNN特征提取、商品匹配、参数配置及400/429等高频报错解决方案,附合规避坑指南与可复用代码,助你高效实现图像搜商品功能。
|
2月前
|
机器学习/深度学习 人工智能 算法
当AI提示词遇见精密算法:TimeGuessr如何用数学魔法打造文化游戏新体验
TimeGuessr融合AI与历史文化,首创时间与空间双维度评分体系,结合分段惩罚、Haversine距离计算与加权算法,辅以连击、速度与完美奖励机制,实现公平且富挑战性的游戏体验。
|
2月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
2月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
144 0
|
人工智能 算法 Java
【搜索算法】数字游戏(C/C++)
【搜索算法】数字游戏(C/C++)
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
186 1
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
743 9
|
算法
互动游戏解决遇到问题之基于射线投射寻路算法的问题如何解决
互动游戏解决遇到问题之基于射线投射寻路算法的问题如何解决
150 0
|
算法 数据挖掘 开发者
LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】
LeetCode题目55:跳跃游戏【python5种算法贪心/回溯/动态规划/优化贪心/索引哈希映射 详解】
|
算法 JavaScript 前端开发
【经典算法】LCR187:破冰游戏(约瑟夫问题,Java/C/Python3/JavaScript实现含注释说明,Easy)
【经典算法】LCR187:破冰游戏(约瑟夫问题,Java/C/Python3/JavaScript实现含注释说明,Easy)
302 1

热门文章

最新文章