强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)

简介: 强化深度学习中使用Dyna-Q算法确定机器人问题中不同规划的学习和策略实战(超详细 附源码)

需要源码请点赞关注收藏后评论区留下QQ并且私信~~~

一、模型、学习、规划简介

1:模型

Agent可以通过模型来预测环境并做出反应,这里所说的模型通常指模拟模型,即在给定一个状态和动作时,通过模型可以对下一状态和奖赏做出预测

模型通常可以分为分布模型和样本模型两种类型

分布模型:该模型可以生成所有可能的结果及其对应的概率分布

样本模型:该模型能够从所有可能的情况中产生一个确定的结果

从功能上讲,模型是用于模拟环境和产生模拟经验的。与样本模型相比,分布模型包含更多的信息,只是现实任务中难以获得所有的状态转移概率

2:学习

学习过程是从环境产生的真实经验中进行学习,根据经验的使用方法,学习过程可以分为直接强化学习和模型学习两种类型

直接强化学习:在真实环境中采集真实经验,根据真实经验直接更新值函数或策略,不受模型偏差的影响

模型学习:在真实环境中采集真实经验,根据真实经验来构建和改进模拟模型,提供模拟模型精度,使其更接近真实环境

3:规划

规划过程是基于模拟环境或经验模型,从模拟经验中更新值函数,实现改进策略的目的,学习和规划的核心都是通过回溯操作来评估值函数,不同之处在于:在规划过程中,Agent并没有与真实环境交互

规划通常可分为状态空间规划和方案空间规划,状态空间规划是在状态空间中寻找最优策略,值函数的计算都是基于状态的,通常该规划方法视为搜索方法,其基本思想如下

1:所有规划算法都以计算值函数作为策略改进的中间关键步骤

2:所有规划算法都可以通过基于模型产生的模拟经验来计算值函数

二、Dyna-Q结构及其算法

Dyna-Q架构包含了在线规划Agent所需要的主要功能,该架构讲学习和规划有机地结合在一起,是有模型和无模型方法的融合,其数据来源包括基于真实环境采样的真实经验以及基于模拟模型采样的模拟经验,通过直接强化学习或间接强化学习来更新值函数或者策略

架构图如下

三、Dyna-Q不同规划对学习步数的影响

机器人环境搭建以及背景可点击如下链接了解

机器人环境

此处比较不同规划步数对实验效果的影响,当机器人离开边界或者撞到障碍物则得到-10的奖赏,到达充电桩获得+1的奖赏,其他情况奖赏均为0,不同需要不同情节数,可视化结果如下

代码如下

import gym
from gym import spaces
from gym.utils import seeding
from random import random, choice
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
class Grid(object):
    def __init__(self, x:int = None,
                       y:int = None,
                       type:int = 0,
                       reward:float = 0.0):
        self.x = x                          # 坐标x
        self.y = y
        self.type = type                    # 类别值(0:空;1:障碍或边界)
        self.reward = reward                # 该格子的即时奖励
        self.name = None                    # 该格子的名称
        self._update_name()
    def _update_name(self):
        self.name = "X{0}-Y{1}".format(self.x, self.y)
    def __str__(self):
        return "name:{3}, x:{0}, y:{1}, type:{2}".format(self.x,
                                                                    self.y,
                                                                    self.type,
                                                                    self.name
                                                                    )
class GridMatrix(object):
    def __init__(self, n_width:int,                 # 水平方向格子数
                       n_height:int,                # 竖直方向格子数
                       default_type:int = 0,        # 默认类型
                       default_reward:float = 0.0,  # 默认即时奖励值
                       ):
        self.grids = None
        self.n_height = n_height
        self.n_width = n_width
        self.len = n_width * n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.reset()
    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x,
                                       y,
                                       self.default_type,
                                       self.default_reward))
    def get_grid(self, x, y=None):
        '''获取一个格子信息
        args:坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return:grid object
        '''
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert(xx >= 0 and yy >= 0 and xx < self.n_width and yy < self.n_height), "任意坐标值应在合理区间"
        index = yy * self.n_width + xx
        return self.grids[index]
    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.reward = reward
        else:
            raise("grid doesn't exist")
    def set_type(self, x, y, type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.type = type
        else:
            raise("grid doesn't exist")
    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.reward
    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.type
# 格子世界环境
class GridWorldEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 30
    }
    def __init__(self, n_width: int=5,
                       n_height: int = 5,
                       u_size=40,
                       default_reward: float = 0.0,
                       default_type=0):
        self.u_size = u_size                        # 当前格子绘制尺寸
        self.n_width = n_width                      # 格子世界宽度(以格子数计)
        self.n_height = n_height                    # 高度
        self.width = u_size * n_width               # 场景宽度 screen width
        self.height = u_size * n_height             # 场景长度
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0                             # for rendering
        self.action = None                          # for rendering
        # 0,1,2,3 represent up, down, left, right
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)
        self.ends = [(0, 0)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = []
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()
    def seed(self, seed=None):
        # 产生一个随机化时需要的种子,同时返回一个np_random对象,支持后续的随机化生成操作
        self.np_random, seed = seeding.np_random(seed)
        return [seed]
    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action))
        self.action = action                        # action for rendering
        old_x, old_y = self._state_to_xy(self.state)
        new_x, new_y = old_x, old_y
        if action == 0: new_y += 1  # up
        elif action == 1: new_y -= 1  # down
        elif action == 2: new_x -= 1  # left
        elif action == 3: new_x += 1  # right
        # boundary effect
        if new_x < 0: new_x = 0
        if new_x >= self.n_width: new_x = self.n_width - 1
        if new_y < 0: new_y = 0
        if new_y >= self.n_height: new_y = self.n_height - 1
        # wall effect:
        # 类型为1的格子为障碍格子,不可进入
        if self.grids.get_type(new_x, new_y) == 1:
            new_x, new_y = old_x, old_y
        self.reward = self.grids.get_reward(new_x, new_y)
        done = self._is_end_state(new_x, new_y)
        self.state = self._xy_to_state(new_x, new_y)
        # 提供格子世界所有的信息在info内
        info = {"x": new_x, "y": new_y, "grids": self.grids}
        return self.state, self.reward, done, info
    # 将状态变为横纵坐标
    def _state_to_xy(self, s):
        x = s % self.n_width
        y = int((s - x) / self.n_width)
        return x, y
    def _xy_to_state(self, x, y=None):
        if isinstance(x, int):
            assert (isinstance(y, int)), "incomplete Position info"
            return x + self.n_width * y
        elif isinstance(x, tuple):
            return x[0] + self.n_width * x[1]
        return -1  # 未知状态
    def refresh_setting(self):
        '''用户在使用该类创建格子世界后可能会修改格子世界某些格子类型或奖励值
        的设置,修改设置后通过调用该方法使得设置生效。
        '''
        for x, y, r in self.rewards:
            self.grids.set_reward(x, y, r)
        for x, y, t in self.types:
            self.grids.set_type(x, y, t)
    def reset(self):
        self.state = self._xy_to_state(self.start)
        return self.state
    # 判断是否是终止状态
    def _is_end_state(self, x, y=None):
        if y is not None:
            xx, yy = x, y
        elif isinstance(x, int):
            xx, yy = self._state_to_xy(x)
        else:
            assert (isinstance(x, tuple)), "坐标数据不完整"
            xx, yy = x[0], x[1]
        for end in self.ends:
            if xx == end[0] and yy == end[1]:
                return True
        return False
    # 图形化界面
    def render(self, mode='human', close=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        zero = (0, 0)
        u_size = self.u_size
        m = 2                                       # 格子之间的间隙尺寸
        # 如果还没有设定屏幕对象,则初始化整个屏幕具备的元素。
        if self.viewer is None:
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(self.width, self.height)
            # 绘制格子
            for x in range(self.n_width):
                for y in range(self.n_height):
                    v = [(x * u_size + m, y * u_size + m),
                         ((x + 1) * u_size - m, y * u_size + m),
                         ((x + 1) * u_size - m, (y + 1) * u_size - m),
                         (x * u_size + m, (y + 1) * u_size - m)]
                    rect = rendering.FilledPolygon(v)
                    r = self.grids.get_reward(x, y) / 10
                    if r < 0:
                        rect.set_color(0.9 - r, 0.9 + r, 0.9 + r)
                    elif r > 0:
                        rect.set_color(0.3, 0.5 + r, 0.3)
                    else:
                        rect.set_color(0.9, 0.9, 0.9)
                    self.viewer.add_geom(rect)
                    # 绘制边框
                    v_outline = [(x * u_size + m, y * u_size + m),
                                 ((x + 1) * u_size - m, y * u_size + m),
                                 ((x + 1) * u_size - m, (y + 1) * u_size - m),
                                 (x * u_size + m, (y + 1) * u_size - m)]
                    outline = rendering.make_polygon(v_outline, False)
                    outline.set_linewidth(3)
                    if self._is_end_state(x, y):
                        # 给终点方格添加金黄色边框
                        outline.set_color(0.9, 0.9, 0)
                        self.viewer.add_geom(outline)
                    if self.start[0] == x and self.start[1] == y:
                        outline.set_color(0.5, 0.5, 0.8)
                        self.viewer.add_geom(outline)
                    if self.grids.get_type(x, y) == 1:  # 障碍格子用深灰色表示
                        rect.set_color(0.3, 0.3, 0.3)
                    else:
                        pass
            # 绘制个体
            self.agent = rendering.make_circle(u_size / 4, 30, True)
            self.agent.set_color(1.0, 1.0, 0.0)
            self.viewer.add_geom(self.agent)
            self.agent_trans = rendering.Transform()
            self.agent.add_attr(self.agent_trans)
            # 更新个体位置
        x, y = self._state_to_xy(self.state)
        self.agent_trans.set_translation((x + 0.5) * u_size, (y + 0.5) * u_size)
        return self.viewer.render(return_rgb_array= mode == 'rgb_array')
# 环境参数设定
class Agent():
    def __init__(self, env):
        self.episode = 1
        self.Q = {}
        self.actions = [0, 1, 2, 3]
        self.position = env.start
        self.model = {}
    # 建立模型
    def make_model(self, pos, act, reward, next_state):
        self.model["{0},{1}".format(pos, act)] = "{0},{1}".format(reward, next_state)
    # 模型规划
    def q_planning(self,n):
        for i in range(0,n):
            a = [i for i in self.model.keys()]
            done = False
            if a != []:
                str = choice(a)
                pos = str.split(",")[0]+","+str.split(",")[1]
                act = int(str.split(",")[2])
                reward = float(self.model[str].split(",")[0])
                next_state = self.model[str].split(",")[1]+","+self.model[str].split(",")[2]
                if next_state == "(0,0)" or next_state == "(4,3)":
                    done = True
                self.updateQ(pos, act, next_state, reward, done)
    def chaxunQ(self, pos, act):
        judge = False
        for i in self.Q:
            if i == "{0},{1}".format(pos, act):
                judge = True
                break
        if judge == True:
            return True
        else:
            self.Q["{0},{1}".format(pos, act)] = float(format(random()/10000, '.3f'))
            return
    # 更新状态动作值Q函数
    def updateQ(self, pos, action, next_pos, reward, done):
        if done == False:
            self.chaxunQ(pos, action)
            old_q = self.Q["{0},{1}".format(pos, action)]
            action1 = self.performmax(next_pos)
            # self.chaxunQ(next_pos, action1)
            new_q = self.Q["{0},{1}".format(next_pos, action1)]
            old_q = old_q + 0.1 * (reward+0.9 * new_q - old_q)
            self.Q["{0},{1}".format(pos, action)] = float(format(old_q, '.3f'))
        else:
            self.chaxunQ(pos, action)
            self.Q["{0},{1}".format(pos, action)] = float(format(reward, '.3f'))
            # print(pos, action,reward)
    # 动作选取策略
    def perform(self, pos):
        eplison = random()
        self.chaxunQ(pos, choice([0, 1, 2, 3]))
        if eplison > 1/self.episode:
            maxq = -1000
            act = ""
            for i in self.Q:
                list = i.split(",")
                state = list[0] + "," + list[1]
                if state == str(pos):
                    if self.Q[i] > maxq:
                        maxq = self.Q[i]
                        act = list[2]
            return int(act)
        else:
            return choice([0, 1, 2, 3])
    # argmaxQ
    def performmax(self, pos):
        maxq = -1000
        str1 = ""
        self.chaxunQ(pos,choice([0,1,2,3]))
        for i in self.Q:
            list = i.split(",")
            state = list[0]+","+list[1]
            if state == str(pos):
                if self.Q[i] > maxq:
                    maxq = self.Q[i]
                    str1 = list[2]
        return int(str1)
def run(n):
    agent = Agent(env)
    total_j = 0
    total_r = 0
    a = []
    b = []
    env.refresh_setting()
    for i in range(0, 300):
        done = False
        env.reset()
        r = 0
        j = 0
        while done == False:
            state = env._state_to_xy(env.state)
            action = agent.perform(state)
            next_state, reward, done, info = env.step(action)
            next_state = env._state_to_xy(next_state)
            # 更新Q值
            agent.updateQ(state, action, next_state, reward,done)
            # 更新模型
            agent.make_model(state, action, reward, next_state)
            r += reward
            # 模型规划
            agent.q_planning(n)
            j = j+1
        tpend(total_r)
        agent.episode += 1
        # print(agent.Q)
        total_j += j
        if i != 0:
            b.append(j)
        print("回合={0},步数={1},奖赏={2}".format(i, j, '%.3f' % r))
    # return (np.array(a)/np.array(total_j)).tolist()
    # return a
    return b
if __name__ == "__main__":
    n_width = 5
    n_height = 5
    default_reward = 0
    env = GridWorldEnv(n_width, n_height, default_reward=default_reward)
    env.types = [(2, 2, 1)]
    env.rewards = [(0, 0, 1), (4, 3, 1)]  # 奖赏值设定
    env.start = (0, 4)
    env.ends = [(0, 0), (4, 3)]
    env.refresh_setting()
    x = range(1, 300)
    ln1, = plt.plot(x, run(0), label=u"n=0")
    ln2, = plt.plot(x, run(5), label=u"n=5")
    ln3, = plt.plot(x, run(10), label=u"n=10")
    ln4, = plt.plot(x, run(30), label=u"n=30")
    font1 = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=15)
ontproperties=font1)
    plt.ylabel(u'步数', fontproperties=font1)
    plt.show()

四、Dyan-Q算法对策略的影响

同样Agent在不同的情节中采用不同的n获得的策略也不一样,当n=50的时候明显快,而且策略更加广泛

代码如下

from random import random, choice
import gym
from gym import spaces
from gym.utils import seeding
class Grid(object):
    def __init__(self, x:int = None,
                       y:int = None,
                       type:int = 0,
                       reward:float = 0.0):
        self.x = x                          # 坐标x
        self.y = y
        self.type = type                    # 类别值(0:空;1:障碍或边界)
        self.reward = reward                # 该格子的即时奖励
        self.name = None                    # 该格子的名称
        self._update_name()
    def _update_name(self):
        self.name = "X{0}-Y{1}".format(self.x, self.y)
    def __str__(self):
        return "name:{3}, x:{0}, y:{1}, type:{2}".format(self.x,
                                                                    self.y,
                                                                    self.type,
                                                                    self.name
                                                                    )
class GridMatrix(object):
    def __init__(self, n_width:int,                 # 水平方向格子数
                       n_height:int,                # 竖直方向格子数
                       default_type:int = 0,        # 默认类型
                       default_reward:float = 0.0,  # 默认即时奖励值
                       ):
        self.grids = None
        self.n_height = n_height
        self.n_width = n_width
        self.len = n_width * n_height
        self.default_reward = default_reward
        self.default_type = default_type
        self.reset()
    def reset(self):
        self.grids = []
        for x in range(self.n_height):
            for y in range(self.n_width):
                self.grids.append(Grid(x,
                                       y,
                                       self.default_type,
                                       self.default_reward))
    def get_grid(self, x, y=None):
        '''获取一个格子信息
        args:坐标信息,由x,y表示或仅有一个类型为tuple的x表示
        return:grid object
        '''
        xx, yy = None, None
        if isinstance(x, int):
            xx, yy = x, y
        elif isinstance(x, tuple):
            xx, yy = x[0], x[1]
        assert(xx >= 0 and yy >= 0 and xx < self.n_width and yy < self.n_height), "任意坐标值应在合理区间"
        index = yy * self.n_width + xx
        return self.grids[index]
    def set_reward(self, x, y, reward):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.reward = reward
        else:
            raise("grid doesn't exist")
    def set_type(self, x, y, type):
        grid = self.get_grid(x, y)
        if grid is not None:
            grid.type = type
        else:
            raise("grid doesn't exist")
    def get_reward(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.reward
    def get_type(self, x, y):
        grid = self.get_grid(x, y)
        if grid is None:
            return None
        return grid.type
class GridWorldEnv(gym.Env):
    metadata = {
        'render.modes': ['human', 'rgb_array'],
        'video.frames_per_second': 30
    }
    def __init__(self, n_width: int=5,
                       n_height: int = 5,
                       u_size=40,
                       default_reward: float = 0.0,
                       default_type=0):
        self.u_size = u_size                        # 当前格子绘制尺寸
        self.n_width = n_width                      # 格子世界宽度(以格子数计)
        self.n_height = n_height                    # 高度
        self.width = u_size * n_width               # 场景宽度 screen width
        self.height = u_size * n_height             # 场景长度
        self.default_reward = default_reward
        self.default_type = default_type
        self.grids = GridMatrix(n_width=self.n_width,
                                n_height=self.n_height,
                                default_reward=self.default_reward,
                                default_type=self.default_type)
        self.reward = 0                             # for rendering
        self.action = None                          # for rendering
        # 0,1,2,3 represent up, down, left, right
        self.action_space = spaces.Discrete(4)
        # 观察空间由low和high决定
        self.observation_space = spaces.Discrete(self.n_height * self.n_width)
        self.ends = [(0, 0)]  # 终止格子坐标,可以有多个
        self.start = (0, 4)  # 起始格子坐标,只有一个
        self.types = [(2, 2, 1)]
        self.rewards = []
        self.refresh_setting()
        self.viewer = None  # 图形接口对象
        self.seed()  # 产生一个随机子
        self.reset()
    def seed(self, seed=None):
        # 产生一个随机化时需要的种子,同时返回一个np_random对象,支持后续的随机化生成操作
        self.np_random, seed = seeding.np_random(seed)
        return [seed]
    def step(self, action):
        assert self.action_space.contains(action), "%r (%s) invalid" % (action, type(action))
        self.action = action                        # action for rendering
        old_x, old_y = self._state_to_xy(self.state)
        new_x, new_y = old_x, old_y
        if action == 0: new_y += 1  # up
        elif action == 1: new_y -= 1  # down
        elif action == 2: new_x -= 1  # left
        elif action == 3: new_x += 1  # right
        # boundary effect
        if new_x < 0: new_x = 0
        if new_x >= self.n_width: new_x = self.n_width - 1
        if new_y < 0: new_y = 0
        if new_y >= self.n_height: new_y = self.n_height - 1
        # wall effect:
        # 类型为1的格子为障碍格子,不可进入
        if self.grids.get_type(new_x, new_y) == 1:
            new_x, new_y = old_x, old_y
        self.reward = self.grids.get_reward(new_x, new_y)
        done = self._is_end_state(new_x, new_y)
        self.state = self._xy_to_state(new_x, new_y)
        # 提供格子世界所有的信息在info内
        info = {"x": new_x, "y": new_y, "grids": self.grids}
        return self.state, self.reward, done, info
    # 将状态变为横纵坐标
    def _state_to_xy(self, s):
        x = s % self.n_width
        y = int((s - x) / self.n_width)
        return x, y
    def _xy_to_state(self, x, y=None):
        if isinstance(x, int):
            assert (isinstance(y, int)), "incomplete Position info"
            return x + self.n_width * y
        elif isinstance(x, tuple):
            return x[0] + self.n_width * x[1]
        return -1  # 未知状态
    def refresh_setting(self):
        '''用户在使用该类创建格子世界后可能会修改格子世界某些格子类型或奖励值
        的设置,修改设置后通过调用该方法使得设置生效。
        '''
        for x, y, r in self.rewards:
            self.grids.set_reward(x, y, r)
        for x, y, t in self.types:
            self.grids.set_type(x, y, t)
    def reset(self):
        self.state = self._xy_to_state(self.start)
        return self.state
    # 判断是否是终止状态
    def _is_end_state(self, x, y=None):
        if y is not None:
            xx, yy = x, y
        elif isinstance(x, int):
            xx, yy = self._state_to_xy(x)
        else:
            assert (isinstance(x, tuple)), "坐标数据不完整"
            xx, yy = x[0], x[1]
        for end in self.ends:
            if xx == end[0] and yy == end[1]:
                return True
        return False
    # 图形化界面
    def render(self, mode='human', close=False):
        if close:
            if self.viewer is not None:
                self.viewer.close()
                self.viewer = None
            return
        zero = (0, 0)
        u_size = self.u_size
        m = 2                                       # 格子之间的间隙尺寸
        # 如果还没有设定屏幕对象,则初始化整个屏幕具备的元素。
        if self.viewer is None:
            from gym.envs.classic_control import rendering
            self.viewer = rendering.Viewer(self.width, self.height)
            # 绘制格子
            for x in range(self.n_width):
                for y in range(self.n_height):
                    v = [(x * u_size + m, y * u_size + m),
                         ((x + 1) * u_size - m, y * u_size + m),
                         ((x + 1) * u_size - m, (y + 1) * u_size - m),
                         (x * u_size + m, (y + 1) * u_size - m)]
                    rect = rendering.FilledPolygon(v)
                    r = self.grids.get_reward(x, y) / 10
                    if r < 0:
                        rect.set_color(0.9 - r, 0.9 + r, 0.9 + r)
                    elif r > 0:
                        rect.set_color(0.3, 0.5 + r, 0.3)
                    else:
                        rect.set_color(0.9, 0.9, 0.9)
                    self.viewer.add_geom(rect)
                    # 绘制边框
                    v_outline = [(x * u_size + m, y * u_size + m),
                                 ((x + 1) * u_size - m, y * u_size + m),
                                 ((x + 1) * u_size - m, (y + 1) * u_size - m),
                                 (x * u_size + m, (y + 1) * u_size - m)]
                    outline = rendering.make_polygon(v_outline, False)
                    outline.set_linewidth(3)
                    if self._is_end_state(x, y):
                        # 给终点方格添加金黄色边框
                        outline.set_color(0.9, 0.9, 0)
                        self.viewer.add_geom(outline)
                    if self.start[0] == x and self.start[1] == y:
                        outline.set_color(0.5, 0.5, 0.8)
                        self.viewer.add_geom(outline)
                    if self.grids.get_type(x, y) == 1:  # 障碍格子用深灰色表示
                        rect.set_color(0.3, 0.3, 0.3)
                    else:
                        pass
            # 绘制个体
            self.agent = rendering.make_circle(u_size / 4, 30, True)
            self.agent.set_color(1.0, 1.0, 0.0)
            self.viewer.add_geom(self.agent)
            self.agent_trans = rendering.Transform()
            self.agent.add_attr(self.agent_trans)
            # 更新个体位置
        x, y = self._state_to_xy(self.state)
        self.agent_trans.set_translation((x + 0.5) * u_size, (y + 0.5) * u_size)
        return self.viewer.render(return_rgb_array= mode == 'rgb_array')
# 环境参数设定
class Agent():
    def __init__(self, env):
        self.episode = 1
        self.Q = {}
        self.actions = [0, 1, 2, 3]
        self.position = env.start
        self.model = {}
    def make_model(self, pos, act, reward, next_state):
        self.model["{0},{1}".format(pos, act)] = "{0},{1}".format(reward, next_state)
    def q_planning(self,n):
        for i in range(0, n):
            a = [i for i in self.model.keys()]
            done=False
            if a != []:
                str = choice(a)
                pos = str.split(",")[0]+","+str.split(",")[1]
                act = int(str.split(",")[2])
                reward = float(self.model[str].split(",")[0])
                next_state = self.model[str].split(",")[1]+","+self.model[str].split(",")[2]
                if next_state == "(8,5)" or next_state == "(1,6)":
                    done = True
                self.updateQ(pos,act,next_state,reward,done)
    def chaxunQ(self, pos, act):
        judge = False
        for i in self.Q:
            if i == "{0},{1}".format(pos, act):
                judge = True
                break
        if judge == True:
            return True
        else:
            self.Q["{0},{1}".format(pos, act)] = float(format(random()/10000, '.3f'))
            return
    # 更新状态动作值Q函数
    def updateQ(self, pos,action,next_pos,reward,done):
        if done == False:
            self.chaxunQ(pos, action)
            old_q = self.Q["{0},{1}".format(pos, action)]
            action1 = self.performmax(next_pos)
            new_q = self.Q["{0},{1}".format(next_pos, action1)]
            old_q = old_q + 0.1 * (reward+0.9 * new_q - old_q)
            self.Q["{0},{1}".format(pos, action)] = float(format(old_q, '.3f'))
        else:
            self.chaxunQ(pos, action)
            self.Q["{0},{1}".format(pos, action)] = float(format(reward, '.3f'))
    # 动作选取策略
    def perform(self, pos):
        eplison = random()
        self.chaxunQ(pos, choice([0, 1, 2, 3]))
        if eplison > 1/self.episode:
            maxq = -1000
            act = ""
            for i in self.Q:
                list = i.split(",")
                state = list[0] + "," + list[1]
                if state == str(pos):
                    if self.Q[i] > maxq:
                        maxq = self.Q[i]
                        act = list[2]
            return int(act)
        else:
            return choice([0, 1, 2, 3])
    # argmaxQ
    def performmax(self, pos):
        maxq = -1000
        str1 = ""
        self.chaxunQ(pos,choice([0,1,2,3]))
        for i in self.Q:
            list = i.split(",")
            state = list[0]+","+list[1]
            if state == str(pos):
                if self.Q[i] > maxq:
                    maxq = self.Q[i]
                    str1 = list[2]
        return int(str1)
def run(n):
    agent = Agent(env)
    total_j = 0
    total_r = 0
    a = []
    b = []
    env.refresh_setting()
    for i in range(0, 300):
        done = False
        env.reset()
        r = 0
        j = 0
        while done == False and j < 50:
            j = j + 1
            state = env._state_to_xy(env.state)
            action = agent.perform(state)
            next_state, reward, done, info = env.step(action)
            next_state = env._state_to_xy(next_state)
            # 更新模型
            agent.make_model(state, action, reward, next_state)
            # 更新Q值
            agent.updateQ(state, action, next_state, reward, done)
            r += reward
            # 模型规划
            agent.q_planning(n)
        if i >= 2:
            total_r += r
            a.append(total_r)
        agent.episode += 1
        action_Q = {}
        for i in sorted(list(agent.Q.keys()), key=lambda x: [x[1], x[4], x[5], x[-1]]):
            action_Q[i] = agent.Q[i]
        print("n={0}:Q值{1}".format(n, action_Q))
        # P_A:状态采取策略
        P_A = {}
        Q_keys = list(action_Q.keys())
        for i in range(0, len(Q_keys)-4, 4):
            temp_action_list = []
            max_a_value = max(action_Q[Q_keys[j]] for j in range(i, i+4))
            # temp_num:标记四个动作最大值
            temp_num = [0, 0, 0, 0]
            # PA:四个动作概率
            PA = [0, 0, 0, 0]
            for k in range(i, i+4):
                if action_Q[Q_keys[k]] == max_a_value:
                    temp_action_list.append(Q_keys[k])
                    temp_num[k-i] = 1
            valid_action_p = round(1/len(temp_action_list), 2)
            for m in range(4):
                if temp_num[m] == 1:
                    PA[m] = valid_action_p
            P_A[Q_keys[i][0:-2]] = PA
        print("Q_A: ", P_A)
        total_j += j
        b.append(j)
    return a
if __name__ == "__main__":
    n_width = 11
    n_height = 7
    default_reward = -0.1
    env = GridWorldEnv(n_width, n_height, default_reward=default_reward)
    env.types = [(1, 2, 1), (2, 2, 1), (3, 2, 1), (4, 2, 1), (5, 2, 1), (6, 2, 1), (7, 2, 1), (8, 2, 1), (9, 2, 1),
                 (10, 2, 1)]
    env.rewards = [(8, 5, 1), (1, 6, 1)]  # 奖赏值设定
    env.start = (4, 0)  # 机器人出发点坐标
    env.ends = [(8, 5), (1, 6)]  # 吸入状态坐标
    env.refresh_setting()
    for i in range(0, 2):
        print("episode=", i+1)
        run(0)
    for i in range(0, 2):
        print("episode=", i+1)
        run(50)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2月前
|
机器学习/深度学习 传感器 算法
深度学习之基于视觉的机器人导航
基于深度学习的视觉机器人导航是一种通过深度学习算法结合视觉感知系统(如摄像头、LiDAR等)实现机器人在复杂环境中的自主导航的技术。
106 5
|
4月前
|
机器学习/深度学习 算法 机器人
使用Python实现深度学习模型:智能灾害响应与救援机器人
使用Python实现深度学习模型:智能灾害响应与救援机器人
84 16
|
4月前
|
人工智能 搜索推荐 安全
从零到一:微信机器人开发的实战心得
从零到一:微信机器人开发的实战心得
305 2
|
5月前
|
机器学习/深度学习 自然语言处理 机器人
基于深度学习的智能语音机器人交互系统设计方案
**摘要** 本项目旨在设计和实现一套基于深度学习的智能语音机器人交互系统,该系统能够准确识别和理解用户的语音指令,提供快速响应,并注重安全性和用户友好性。系统采用分层架构,包括用户层、应用层、服务层和数据层,涉及语音识别、自然语言处理和语音合成等关键技术。深度学习模型,如RNN和LSTM,用于提升识别准确率,微服务架构和云计算技术确保系统的高效性和可扩展性。系统流程涵盖用户注册、语音数据采集、识别、处理和反馈。预期效果是高识别准确率、高效处理和良好的用户体验。未来计划包括系统性能优化和更多应用场景的探索,目标是打造一个适用于智能家居、医疗健康、教育培训等多个领域的智能语音交互解决方案。
|
6月前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
6月前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
6月前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
5月前
|
算法 异构计算
FPGA强化(10):基于Sobel算法的边缘检测(二)
FPGA强化(10):基于Sobel算法的边缘检测(二)
104 0
|
5月前
|
算法 异构计算
FPGA强化(10):基于Sobel算法的边缘检测(一)
FPGA强化(10):基于Sobel算法的边缘检测
41 0
|
6月前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
170 0
下一篇
DataWorks