PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

简介: PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~

一、实验数据准备

我们使用的是MIT67数据集,这是一个标准的室内场景检测数据集,一个有67个室内场景,每类包括80张训练图片和20张测试图片 读者可通过以下网址下载

但是数据集较大,下载花费时间较长,所以建议私信我发给你们

数据集

将下载的数据集解压,主要使用Image文件夹,这个文件夹一共包含6700张图片,还有它们标签的txt文件

大体流程分为以下几步

二、数据预处理和准备

1:数据集的读取

2:重载data.Dataset类

3:transforms数据预处理

三、模型构建

1:ResNet-50网络

网络结构图如下

2:bottleneck的实现

结构图如下

 

3:ResNet-50卷积层定义

4:forward函数的实现

5:预训练参数装载

四、模型训练与结果评估

1:训练类的实现

2:优化器的定义

3:学习率衰减

4:训练

训练过程如下

最后 部分代码如下

1.py

import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import os
import numpy as np
from mymodels import *
from PIL import Image
import torch.utils.data as data
from torch.utils.data import DataLoader
from utils import *
tmp_dir = '/home/yyh/tmpmit67'
import torch.optim as optim
import matplotlib.pyplot as plt
import time
import json
def get_im_list(im_dir, file_path):
    im_list = []
    im_labels = []
    im_origin = []
    with open(file_path, 'r') as fi:
        for line in fi:
            im_list.append(im_dir + line.split()[0])
            im_labels.append(int(line.split()[-1]))
            im_origin.append(line.split()[0])
            array = line.split('/')
    return im_list, im_labels, im_origin
ate(fi):
            sname = line.strip()
            sdict[sid] = sname
    return sdict
_sdict = sun397_sdict()
arch = 'resnet50'
# load the pre-trained weights
model_file = '%s_places365.pth.tar' % arch
if not os.access(model_file, os.W_OK):
    weight_url = 'http://places2.csail.mit.edu/models_places365/' + model_file
    os.system('wget ' + weight_url)
model = resnet50(num_classes=365)
checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
model.load_state_dict(state_dict)
model.fc = torch.nn.Linear(2048,67)
model.eval()
"""
model = resnet50(num_classes=67)
pretrained = torch.load("/home/yyh/fineTune/mit67_place/model_epoch_30.pth").module
state_dict = pretrained.state_dict()
model.load_state_dict(state_dict)
model.eval()
"""
# load the image transformer
transform_train = trn.Compose([
        trn.Scale(256),
        trn.RandomSizedCrop(224),
        trn.RandomHorizontalFlip(),
        trn.ToTensor(),
        trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
transform_test = trn.Compose([
        trn.Scale(256),
        trn.CenterCrop(224),
        trn.ToTensor(),
        trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# load the class label
def default_loader(path):
    return Image.open(path).convert('RGB')
class MyDataset(data.Dataset):
    def __init__(self, images, labels,loader=default_loader,transform=None):
        self.images = images
        self.labels = labels
        self.loader = loader
        self.transform = transform
    def __getitem__(self, index):
        img, target = self.images[index], self.labels[index]
        #print(img)
        img = self.loader(img)
        if self.transform is not None:
            img = self.transform(img)
        #print(img)
        return img, target
    def __len__(self):
        return len(self.images)
imdir = r'C:\Users\Admin\Desktop\MIT67\Images/'
train_file = 'C:\Users\Admin\Desktop\MIT67\TrainImages.label'
test_file = 'C:\Users\Admin\Desktop\MIT67\TestImages.label'
#train_file = test_file
train_list, train_labels,img_path= get_im_list(imdir, train_file)
test_list, test_labels ,img_path_2= get_im_list(imdir, test_file)
batch_size = 16
net = model
net.cuda()
#print(test_js)
for i in range(0, len(train_list)):
    path = img_path[i]
    save = []
    print(path)
    json_name = (path.replace("/", "_")).replace(".jpg", ".json")
    f_train = open("C:\Users\Admin\Desktop\rgbd_data\annotated_area/" + json_name)
    train_js = json.load(f_train)
    if len(train_js) == 0:
        train_js.append( {"classname":"unknown","bbox":[0,0,223,223],"score":1})
    for j in range(0, len(train_js)):
        data, target = train_list[i], train_labels[i]
        data = Image.open(data).convert('RGB')
        json_data = train_js[j]["bbox"]
        data = data.resize((224, 224), Image.ANTIALIAS)
        print(json_data)
        data = data.crop([json_data[0], json_data[1], json_data[2], json_data[3]])
        data = data.resize((224, 224), Image.ANTIALIAS)
        data = transform_test(data)
        newdata = torch.zeros(1, 3, 224, 224)
        newdata[0] = data
        data = Variable(newdata).cuda()
        output, record = net(data)
        data = record.cpu().detach().numpy()
        save.append(data)
    data = save[0]
    for j in range(1, len(train_js)):
        data += save[j]
    data = data / len(train_js)
    # print(data)
    # target = Variable(target).cuda()
    # print(output)
    # print(output["avgpool"].cpu().shape)
    root = "/home/yyh/PycharmProjects/feature_extractor/loc_224_npy/" + path.split("/")[0]
    if not os.path.exists(root):
        os.makedirs(root)
    dir = "/home/yyh/PycharmProjects/feature_extractor/loc_224_npy/" + path.replace(".jpg",".npy")
    np.save(dir, data)
    print(i)
for i in range(0, len(test_list)):
    path = img_path_2[i]
    save = []
    print(path)
    json_name = (path.replace("/", "_")).replace(".jpg", ".json")
    f_test = open("/home/yyh/rgbd_data/annotated_area/" + json_name)
    test_js = json.load(f_test)
    if len(test_js) == 0:
        test_js.append( {"classname":"unknown","bbox":[0,0,223,223],"score":1})
    for j in range(0, len(test_js)):
        data, target = test_list[i], test_labels[i]
        data = Image.open(data).convert('RGB')
        json_data = test_js[j]["bbox"]
        data = data.resize((224, 224), Image.ANTIALIAS)
        print(json_data)
        data = data.crop([json_data[0], json_data[1], json_data[2], json_data[3]])
        data = data.resize((224, 224), Image.ANTIALIAS)
        data = transform_test(data)
        newdata = torch.zeros(1, 3, 224, 224)
       tach().numpy()
        save.append(data)
    data = save[0]
    for j in range(1, len(test_js)):
        data += save[j]
    data = data / len(test_js)
    print(data)
    root = "/home/yyh/PycharmProjects/feature_extractor/loc_224_npy/" + path.split("/")[0]
    if not os.path.exists(root):
        os.makedirs(root)
    dir = "/home/yyh/PycharmProjects/feature_extractor/loc_224_npy/" + path.replace(".jpg",".npy")
    np.save(dir, data)
    print(i)
    #time.sleep(10)
#print(net)
#train_net = torch.nn.DataParallel(net, device_ids=[0])
#optimizer = optim.SGD(params=train_net.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
#scheduler = StepLR(optimizer, 30, gamma=0.1)
#trainer = Trainer(train_net, optimizer, F.cross_entropy, save_dir="./mit67_imagenet_448")
#trainer.loop(130, train_loader, test_loader, scheduler)

2.py

from pathlib import Path
import torch
from torch.autograd import Variable
from torch.optim import Optimizer
from torch import nn
from tqdm import tqdm
import torch.nn.functional as F
    expansion = 4
    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)
        return out
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, padding=0)
        self.fc = nn.Linear(512 * block.expansion, num_classes)
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)
    def forward(self, x):
        record = dict()
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        record["maxpool"] = x
        x = self.maxpool(x)
        x = self.layer1(x)
        record["layer1"] = x
        x = self.layer2(x)
        record["layer2"] = x
        x = self.layer3(x)
        record["layer3"] = x
        x = self.layer4(x)
        record["layer4"] = x
        x = selpool"] = x
        x = self.fc(x)
        return x,record["avgpool"]
def rined=False, **kwargs):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
    return model

3.py

from pathlib import Path
import torch
from torch.autograd import Variable
from torch.optim import Optimizer
from torch import nn
from tqdm import tqdm
a.is_available()
    torch.backends.cudnn.benchmark = True
    def __init__(self, model, optimizer, loss_f, save_dir=None, save_freq=10):
        self.model = model
        if self.cuda:
            model.cuda()
        self.optimizer = optimizer
        self= save_dir
        self.save_freq = save_freq
    def _iteration(self, data_loader, is_train=True):
        loop_loss = []
        accuracy = []
        for data, target in tqdm(data_loader, ncols=80):
            if self.cuda:
                data, target = data.cuda(), target.cuda()
            output = self.model(data)
            loss = self.loss_f(output, target)
            loop_loss.append(loss.data.item() / len(data_loader))
            accuracy.append((output.data.max(1)[1] == target.data).sum().item())
            if is_train:
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
        mode = "train" if is_train else "test"
        #print(">>>[{}] loss: {:.2f}/accuracy: {:.2%}").format(mode,sum(loop_loss),float(sum(accuracy)) / float(len(data_loader.dataset)))
        print(mode)
        print(sum(loop_loss))
        print(float(sum(accuracy)) / float(len(data_loader.dataset)))
        return loop_loss, accuracy
    def train(self, data_loader):
        self.model.train()
        with torch.enable_grad():
            loss, correct = self._iteration(data_loader)
    def test(self, data_loader):
        self.model.eval()
        with torch.no_grad():
            loss, correct = self._iteration(data_loader, is_train=False)
    def loop(self, epochs, train_data, test_data, scheduler=None):
        for ep in range(1, epochs + 1):
            if scheduler is not None:
                scheduler.step()
            print("epochs: {}".format(ep))
            self.train(train_data)
            self.test(test_data)
            if ep % self.save_freq == 0:
                self.save(ep)
    def save(self, epoch, **kwargs):
        if self.save_dir is not None:
            model_out_path = Path(self.save_dir)
            state = self.model
            if not model_out_path.exists():
                model_out_path.mkdir()
            print(self.save_dir+ "model_epoch_{}.pth".format(epoch))
            torch.save(state, self.save_dir+ "/model_epoch_{}.pth".format(epoch))
class _LRScheduler(object):
    def __init__(self, optimizer, last_epoch=-1):
        if not isinstance(optimizer, Optimizer):
            raise TypeError('{} is not an Optimizer'.format(
                    type(optimizer).__name__))
        self.optimizer = optimizer
        if last_epoch == -1:
            for group in optimizer.param_groups:
                group.setdefault('initial_lr', group['lr'])
        else:
            for i, group in enumerate(optimizer.param_groups):
                if 'initial_lr' not in group:
                    raise KeyError("param 'initial_lr' is not specified "
                                   "in param_groups[{}] when resuming an optimizer".format(i))
        self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
        self.step(last_epoch + 1)
        self.last_epoch = last_epoch
    def get_lr(self):
        raise NotImplementedError
    def step(self, epoch=None):
        if epoch is None:
        tep_size, gamma=0.1, last_epoch=-1):
        self.step_size = step_size
        self.gamma = gamma
        super(StepLR, self).__init__(optimizer, last_epoch)
    def get_lr(self):
        return [base_lr * self.gamma ** (self.last_epoch // self.step_size)
                for base_lr in self.base_lrs]

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
2天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
20 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
371 1
|
18天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
4月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
5月前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
51 3
|
5月前
|
机器学习/深度学习 网络安全 TensorFlow
探索操作系统的心脏:内核与用户空间的奥秘云计算与网络安全:技术挑战与未来趋势深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第29天】在数字世界的每一次点击与滑动背后,都隐藏着一个不为人知的故事。这个故事关于操作系统——计算机的灵魂,它如何协调硬件与软件,管理资源,并确保一切运行得井井有条。本文将带你走进操作系统的核心,揭示内核与用户空间的秘密,展现它们如何共同编织出我们日常数字生活的底层结构。通过深入浅出的讲解和代码示例,我们将一同解锁操作系统的神秘面纱,理解其对现代计算的重要性。 【8月更文挑战第29天】本文将深入探讨卷积神经网络(CNN)的基本原理和结构,以及它们如何被广泛应用于图像识别任务中。我们将通过代码示例来展示如何使用Python和TensorFlow库构建一个简单的CNN模型,并训练
|
5月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
61 0
|
19天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
59 17
|
30天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。