手把手带你绘制条形图

简介: 手把手带你绘制条形图

简介

本次推文参考书籍《THE HITCHHIKER’S GUIDE TO GGPLOT2[1]》并结合小编个人科研经验。主要目的:带大家一步步绘制以下条形图:

类似的文章小编还写过:如何一步步提高图形 B 格?以 ggplot 绘图为例

数据介绍

使用以下数据作为案例,数据预览如下所示

library(ggplot2) 
library(ggthemes) 
library(dplyr) 
library(readr) 
library(scales) 
library(forcats)
chilean.exports = "year,product,export,percentage 
                  2006, copper,4335009500,81
                  2006,others, 1016726518,19
                  2007,copper,9005361914,86
                  2007,others,1523085299,14
                  2008, copper,6907056354,80
                  2008, others, 1762684216, 20
                  2009,copper, 10529811075,81
                  2009,others,2464094241,19
                  2010, copper, 14828284450,85
                  2010,others,2543015596,15
                  2011,copper,15291679086,82
                  2011, others, 3447972354,18
                  2012, copper,14630686732,80
                  2012,others,3583968218,2(
                  2013,copper,15244038840,79
                  2013,others,4051281128,21
                  2014,copper,14703374241,78
                  2014,others, 4251484600,22
                  2015, copper,13155922363,78
                  2015, others, 3667286912, 22
"
charts.data = read_csv(chilean.exports)

数据预览

条形图

接下来根据该数据绘制条形图。

基础图形

以年份为 x 轴,出口量为 y 轴,产品分类作为填充颜色,来绘制条形图(geom_col() )。

p3 = ggplot(aes(y = export, x = year, fill = fct_rev(product)), data = charts.data) + 
  geom_col() 
p3

增加数据标签

先使用 mutate() 添加标签数据,之后在原图基础上添加数据标签(geom_text())。

charts.data = charts.data %>% 
  mutate(export_label = paste(round(export/1000000000,2), "B"))
p3 = p3 + geom_text(data = charts.data, 
                    aes(x = year, y = export, label = export_label), size = 3) 
p3

调整数据标签位置

由于默认加入的标签位置不合适,所以通过参数 position = position_stack(vjust = 0.5) 进行修改标签位置。

p3 = ggplot(aes(y = export, x = year, fill = fct_rev(product)), data = charts.data) + geom_col()
p3 = p3 + geom_text(aes(label = export_label), position = position_stack(vjust = 0.5), size = 3) 
p3


调整图例位置

调整图例位置,从默认的右侧转变为底部 (legend.position = "bottom"),并设置标签方向为水平(legend.direction = "horizontal"),取消标签标题(legend.title = element_blank())。

p3 = p3 + theme(legend.position = "bottom", legend.direction = "horizontal", legend.title = element_blank()) 
p3


调整 x 轴刻度

x 轴坐标为年份,所以进行刻度设置。

p3 = p3 + scale_x_continuous(breaks = seq(2006,2015,1)) 
p3


调整坐标轴标签和添加标题

p3 = p3 +
  labs(title = "Composition of Exports to China ($)", subtitle = "Source: The Observatory of Economic Complexity") +
  labs(x = "Year", y = "USD million")
p3


调整颜色配色

类似于推文:如何一步步提高图形 B 格?以 ggplot 绘图为例。前面的图形是基于 ggplot[2] 默认配色绘制的,如果你想使得图形更加上档次,可以使用其他配色方案。可以使用其他 R 包提供的配色方案,例如:ggsci[3]viridis[4]等。当然也可以使用 scale_fill_manual() 手动添加颜色。

fill = c("#E1B378","#5F9EA0") 
p3 = p3 + scale_fill_manual(values = fill) 
p3


修改字体类型

读者可以通过修改字体类型来增加图形的档次。主要使用 showtext[5] 包来实现该功能。假设我们使用 Google 的字体。在代码中,主要通过参数 element_text(family = "bell"),family = "bell"等方式设置字体类型。此时得到的图形如下所示:

library(showtext)
font_add_google("Gochi Hand", "gochi")
font_add_google("Schoolbell", "bell")
showtext_auto()
fill = c("#4702A1","#227CC9")
p3 = ggplot(aes(y = export, x = year, fill = fct_rev(product)), data = charts.data) + 
  geom_col() + 
  geom_text(aes(label = export_label), position = position_stack(vjust = 0.5), 
            size = 3, family = "bell", colour = "white", show.legend = F) + 
  scale_x_continuous(breaks = seq(2006,2015,1)) + 
  labs(title = "Composition of Exports to China ($)", subtitle = "Source: The Observatory of Economic Complexity") +
  labs(x = "Year", y = "USD million") +
  scale_fill_manual(values = fill) + 
  theme(axis.line.x = element_line(linewidth = .5, colour = "black"), axis.line.y = element_line(size = .5, colour = "black"), 
        axis.text.x = element_text(colour = "black", size = 10), axis.text.y = element_text(colour = "black", size = 10), 
        legend.key = element_rect(fill = "white", colour = "white"), legend.position = "bottom", legend.direction = "horizontal", 
        legend.title = element_blank(), 
        panel.grid.major = element_blank(), 
        panel.grid.minor = element_blank(), 
        panel.border = element_blank(), 
        panel.background = element_blank(), 
        plot.title = element_text(family = "bell"), 
        text = element_text(family = "gochi")) + 
  guides(fill = guide_legend(reverse = T)) 
p3

使用自定义主题

为了复现前文介绍的图形,我们可以次啊用自定义主题的方式。自己设置填充颜色,以及主题中的细节设定。

fill = c("#b2d183","#40b8d0")
p3 = ggplot(aes(y = export, x = year, fill = fct_rev(product)), data = charts.data) + geom_col() + 
  geom_text(aes(label = export_label), position = position_stack(vjust = 0.5),
            colour = "black", family = "Tahoma", size = 3, show.legend = F) +
  scale_x_continuous(breaks = seq(2006,2015,1)) + labs(title = "Composition of Exports to China ($)", subtitle = "Source: The Observatory of Economic Complexity") +
  labs(x = "Year", y = "USD million") +
  scale_fill_manual(values = fill) + 
    theme(panel.border = element_rect(colour = "black", fill = NA, linewidth = .5), 
          axis.text.x = element_text(colour = "black", size = 10), 
          axis.text.y = element_text(colour = "black", size = 10), 
          legend.key = element_rect(fill = "white", colour = "white"), 
          legend.position = "bottom", legend.direction = "horizontal", 
          legend.title = element_blank(), panel.grid.major = element_line(colour = "#d3d3d3"), 
          panel.grid.minor = element_blank(), panel.background = element_blank(),
          plot.title = element_text(size = 14, family = "Tahoma", face = "bold"), 
          text = element_text(family = "Tahoma")) + 
    guides(fill = guide_legend(reverse = T)) 
p3

小编有话说

  • 其他图形的绘制与其类似,大致就是通过这几种方式来美化图形。

参考资料

[1]

THE HITCHHIKER’S GUIDE TO GGPLOT2: https://leanpub.com/ggplot-guide

[2]

ggplot: https://ggplot2.tidyverse.org/reference/ggplot.html

[3]

ggsci: https://github.com/nanxstats/ggsci

[4]

viridis: https://github.com/sjmgarnier/viridis

[5]

showtext: https://cran.rstudio.com/web/packages/showtext/vignettes/introduction.html



目录
相关文章
|
1月前
|
数据可视化 Python
Matplotlab可视化学习笔记(二):如何绘制柱状图
使用Matplotlib库在Python中绘制柱状图的教程,包括基本的柱状图绘制和多条柱状图的绘制方法。
30 1
Matplotlab可视化学习笔记(二):如何绘制柱状图
|
1月前
|
数据可视化 Python
Matplotlab可视化学习笔记(一):如何绘制折线图
这篇博客介绍了如何使用Matplotlib库在Python中绘制折线图,包括常用颜色和线型、绘制多条折线图的方法、设置双y轴的技巧,以及如何保存和显示图表。
27 0
|
5月前
|
Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-2
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
|
5月前
|
数据可视化 开发者 Python
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)-1
Python学习笔记之Matplotlib模块入门(直线图、折线图、曲线图、散点图、柱状图、饼状图、直方图、等高线图和三维图的绘制)
R语言笔记丨绘图基础知识:饼图、条形图
R语言笔记丨绘图基础知识:饼图、条形图
|
6月前
|
机器学习/深度学习 存储 数据可视化
手把手教你绘制和解读实用R列线图(Nomogram):从入门到精通
手把手教你绘制和解读实用R列线图(Nomogram):从入门到精通
1819 1
|
数据格式
如何绘制热图?ggplot2入门笔记
如何绘制热图?ggplot2入门笔记
|
6月前
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程(上)
【SPSS】基础图形的绘制(条形图、折线图、饼图、箱图)详细操作过程
522 0
|
数据可视化 数据处理
R绘图案例|基于分面的折线图绘制
R绘图案例|基于分面的折线图绘制
287 0
|
数据挖掘 Python
【Python数据分析 - 2】:多个坐标系的绘制
【Python数据分析 - 2】:多个坐标系的绘制
122 0
【Python数据分析 - 2】:多个坐标系的绘制