AI识别技术在智慧工地的应用场景

简介: 智慧工地是指以物联网、移动互联网技术为基础,充分应用人工智能等信息技术,通过AI赋能建筑行业,对住建项目内人员、车辆、安全、设备、材料等进行智能化管理,实现工地现场生产作业协调、智能处理和科学管理。AI智能分析系统,对工地未佩戴安全帽、未穿反光背心、明烟明火等违规现象实时识别报警,可灵活对接智慧工地管理平台系统,为政府部门、施工单位和监管企业提供高效、经济、安全的安监方案,推动施工作业风险管理从事后管理向事前、事中管理转变,使作业风险得到有效管控。

智慧工地是指以物联网、移动互联网技术为基础,充分应用人工智能等信息技术,通过AI赋能建筑行业,对住建项目内人员、车辆、安全、设备、材料等进行智能化管理,实现工地现场生产作业协调、智能处理和科学管理。AI智能分析系统,对工地未佩戴安全帽、未穿反光背心、明烟明火等违规现象实时识别报警,可灵活对接智慧工地管理平台系统,为政府部门、施工单位和监管企业提供高效、经济、安全的安监方案,推动施工作业风险管理从事后管理向事前、事中管理转变,使作业风险得到有效管控。

AI识别.png

AI识别在智慧工地的应用场景非常广泛,主要包括以下几个方面:
1、人员管理:AI识别技术可以用于识别工人的身份、工作状态等信息,提高人员管理的效率和准确性。例如,通过人脸识别技术,可以快速准确地记录工人的进出时间、工作状态等,避免人为因素造成的误差。

2、设备监测:AI识别技术可以用于监测设备的运行状态、故障预警等信息,提高设备管理的效率和安全性。例如,通过图像识别技术,可以实时监测塔吊、施工升降机等设备的运行状态,一旦发现异常情况,及时进行预警和处理。

3、环境监测:AI识别技术可以用于监测施工现场的环境参数,如温度、湿度、风速等,为施工提供更加准确的环境数据。例如,通过红外线传感器技术,可以实时监测施工现场的温度情况,为施工提供更加准确的环境数据。

4、安全隐患识别:AI识别技术可以用于识别施工现场的安全隐患,如周界入侵、危险区域闯入、重点区域人员徘徊、攀爬、摔倒等危险行为。一旦发现异常情况,及时进行预警和处理,避免事故的发生。

5、施工质量监测:AI识别技术可以用于监测施工过程中的质量参数,如混凝土强度、钢筋位置等,提高施工质量的控制和监督能力。例如,通过图像识别技术,可以实时监测混凝土的浇筑情况,确保混凝土的密实度和强度符合要求。

总的来说,AI识别在智慧工地的应用场景非常广泛,涵盖了人员管理、设备监测、环境监测、安全隐患识别以及施工质量监测等方面。这些应用不仅有助于提高施工效率和质量,也有助于保障施工安全和降低事故风险。

相关文章
|
7天前
|
人工智能 小程序 Java
电子班牌管理系统源代码,基于AI人脸识别技术的智能电子班牌云平台解决方案
电子班牌管理系统源码,基于AI人脸识别的智慧校园云平台,支持SaaS架构,涵盖管理端、小程序与安卓班牌端。集成考勤、课表、通知、门禁等功能,提供多模式展示与教务联动,助力校园智能化管理。
58 0
|
11天前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
用AI守护迷途少年:戒毒所青少年心理疏导系统的技术实践
在戒毒所中,青少年心理更脆弱却难言苦痛。我们打造AI心理疏导系统,以多模态情绪识别、个性化疏导引擎与隐私优先架构,用技术补位心理支持,主动发现风险,精准干预,守护迷途少年重拾希望。(239字)
|
20天前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
349 6
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
AIGC技术深度解析:生成式AI的革命性突破与产业应用实战
蒋星熠Jaxonic,AI技术探索者,深耕生成式AI领域。本文系统解析AIGC核心技术,涵盖Transformer架构、主流模型对比与实战应用,分享文本生成、图像创作等场景的实践经验,展望技术趋势与产业前景,助力开发者构建完整认知体系,共赴AI原生时代。
|
1月前
|
机器学习/深度学习 人工智能 资源调度
嵌入式AI领域关键技术的理论基础
本内容系统讲解嵌入式AI领域关键技术的数学理论基础,涵盖神经网络量化、剪枝、知识蒸馏与架构搜索的核心原理。深入探讨量化中的信息论与优化方法、稀疏网络的数学建模、蒸馏中的信息传递机制,以及神经架构搜索的优化框架,为在资源受限环境下实现高效AI推理提供理论支撑。
76 5
|
14天前
|
人工智能 搜索推荐 机器人
07_大模型未来趋势:2025年AI技术前沿展望
2025年,人工智能技术正站在一个新的历史节点上。经过过去几年的爆发式发展,大语言模型(LLM)已从实验室走向各行各业,成为推动数字化转型的核心力量
|
7天前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
139 14
|
18天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
328 19
|
7天前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
100 3

热门文章

最新文章