基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

276b7e06e8c8957f4f08ef5790592375_82780907_202312142227490093838150_Expires=1702564669&Signature=3teVQ%2FCpX9%2BB0ZXKMYbdY0I7iK0%3D&domain=8.jpeg

将FPGA的仿真结果导入到MATLAB,结果如下所示:

facd9c401b1443fb0a8963ec334502dd_82780907_202312142227590968343481_Expires=1702564680&Signature=lVrI7C8MTyGDGohZnYGwFhwtF4E%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像形态学腐蚀算法实现主要依赖于图像处理的基本原理和数学形态学的基础知识。在图像处理中,形态学操作被广泛应用于各种图像处理任务,包括噪声消除、对象检测和识别、图像分割等。其中,腐蚀操作是形态学操作的一种基本形式,它有助于减小图像中明亮区域的大小。

   首先,让我们了解一下图像形态学的基础知识。形态学操作通常在二值图像上进行,但是也可以扩展到灰度图像和彩色图像。在二值图像中,形态学腐蚀操作被定义为将一个结构元素(通常是一个小的矩形或圆形)在图像上移动,并将每个像素值替换为该像素值和结构元素覆盖区域的最小值。这样,在经过腐蚀操作后,图像中的明亮区域(或高像素值区域)会得到缩小。

具体来说,腐蚀操作的数学表达式可以表示为:

Erosion(f,I)=min⁡{f(x+s),I(s)}(x)f(x+s)−I(s)min{f(x+s), I(s)}

   其中,f是原始图像,I是结构元素,s是结构元素的位移。这个公式表示的是,对于每一个像素位置x,将结构元素中心对齐到位置x,并取结构元素覆盖区域的最小值作为输出图像在该位置的值。

  在FPGA上实现图像形态学腐蚀算法时,可以采用硬件并行处理的方式,以提高处理速度。首先,将输入的图像数据存储在FPGA的内部RAM中。然后,通过一个并行处理器,将结构元素在图像上移动,并计算每个像素位置的输出值。最后,将计算出的输出数据存储在外部RAM中,或者直接用于后续的图像处理任务。

  需要注意的是,在实现形态学腐蚀算法时,需要选择合适的结构元素形状和大小。不同的结构元素可能会导致不同的腐蚀效果。此外,由于形态学操作涉及到大量的数据运算,因此需要合理优化算法和硬件设计,以提高处理速度和效率。

   总的来说,基于FPGA的图像形态学腐蚀算法实现需要结合图像处理的基本原理和数学形态学的基础知识,同时考虑硬件并行处理的特点和实际应用的需求。通过合理选择结构元素、优化算法和硬件设计等手段,可以实现高效的图像腐蚀操作。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_binary_image;
wire [7:0] o_expansion;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\codepz\data.bmp","rb");
dat = $fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
II0<=image_buff[jj];
jj<=jj+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I0 (II0),
.o_binary_image (o_binary_image),
.o_expansion (o_expansion)
);

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("binary_image.txt","w");
fout2 = $fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin

$fwrite(fout1,"%d\n",o_binary_image);
$fwrite(fout2,"%d\n",o_expansion);

end

endmodule

```

相关文章
|
20天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
53 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
1天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
3月前
|
运维
【运维基础知识】用dos批处理批量替换文件中的某个字符串(本地单元测试通过,部分功能有待优化,欢迎指正)
该脚本用于将C盘test目录下所有以t开头的txt文件中的字符串“123”批量替换为“abc”。通过创建批处理文件并运行,可实现自动化文本替换,适合初学者学习批处理脚本的基础操作与逻辑控制。
216 56
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
3月前
|
安全 Linux 网络安全
Kali 渗透测试:利用HTA文件进行渗透攻击
Kali 渗透测试:利用HTA文件进行渗透攻击
59 1
|
4月前
|
Java C++
代码文件间重复性测试
本文介绍了如何使用代码相似性检测工具simian来找出代码文件中的重复行,并通过示例指令展示了如何将检测结果输出到指定的文本文件中。
|
3月前
|
安全 Linux 网络安全
Kali渗透测试:自动播放文件攻击
Kali渗透测试:自动播放文件攻击
44 0
|
4月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
5月前
|
JSON Java 测试技术
单元测试问题之使用JSON文件作为参数化测试的输入源如何解决
单元测试问题之使用JSON文件作为参数化测试的输入源如何解决
91 0
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码