基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像形态学腐蚀算法实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

276b7e06e8c8957f4f08ef5790592375_82780907_202312142227490093838150_Expires=1702564669&Signature=3teVQ%2FCpX9%2BB0ZXKMYbdY0I7iK0%3D&domain=8.jpeg

将FPGA的仿真结果导入到MATLAB,结果如下所示:

facd9c401b1443fb0a8963ec334502dd_82780907_202312142227590968343481_Expires=1702564680&Signature=lVrI7C8MTyGDGohZnYGwFhwtF4E%3D&domain=8.jpeg

2.算法运行软件版本
vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA的图像形态学腐蚀算法实现主要依赖于图像处理的基本原理和数学形态学的基础知识。在图像处理中,形态学操作被广泛应用于各种图像处理任务,包括噪声消除、对象检测和识别、图像分割等。其中,腐蚀操作是形态学操作的一种基本形式,它有助于减小图像中明亮区域的大小。

   首先,让我们了解一下图像形态学的基础知识。形态学操作通常在二值图像上进行,但是也可以扩展到灰度图像和彩色图像。在二值图像中,形态学腐蚀操作被定义为将一个结构元素(通常是一个小的矩形或圆形)在图像上移动,并将每个像素值替换为该像素值和结构元素覆盖区域的最小值。这样,在经过腐蚀操作后,图像中的明亮区域(或高像素值区域)会得到缩小。

具体来说,腐蚀操作的数学表达式可以表示为:

Erosion(f,I)=min⁡{f(x+s),I(s)}(x)f(x+s)−I(s)min{f(x+s), I(s)}

   其中,f是原始图像,I是结构元素,s是结构元素的位移。这个公式表示的是,对于每一个像素位置x,将结构元素中心对齐到位置x,并取结构元素覆盖区域的最小值作为输出图像在该位置的值。

  在FPGA上实现图像形态学腐蚀算法时,可以采用硬件并行处理的方式,以提高处理速度。首先,将输入的图像数据存储在FPGA的内部RAM中。然后,通过一个并行处理器,将结构元素在图像上移动,并计算每个像素位置的输出值。最后,将计算出的输出数据存储在外部RAM中,或者直接用于后续的图像处理任务。

  需要注意的是,在实现形态学腐蚀算法时,需要选择合适的结构元素形状和大小。不同的结构元素可能会导致不同的腐蚀效果。此外,由于形态学操作涉及到大量的数据运算,因此需要合理优化算法和硬件设计,以提高处理速度和效率。

   总的来说,基于FPGA的图像形态学腐蚀算法实现需要结合图像处理的基本原理和数学形态学的基础知识,同时考虑硬件并行处理的特点和实际应用的需求。通过合理选择结构元素、优化算法和硬件设计等手段,可以实现高效的图像腐蚀操作。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] image_buff [0:100000];
reg [7:0] II0;
wire [7:0] o_binary_image;
wire [7:0] o_expansion;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\codepz

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\codepz\data.bmp","rb");
dat = $fread(image_buff,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

2000;

i_rst=0;
end

always #10 i_clk=~i_clk;

always@(posedge i_clk)
begin
II0<=image_buff[jj];
jj<=jj+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I0 (II0),
.o_binary_image (o_binary_image),
.o_expansion (o_expansion)
);

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("binary_image.txt","w");
fout2 = $fopen("expansion.txt","w");
end

always @ (posedge i_clk)
begin

$fwrite(fout1,"%d\n",o_binary_image);
$fwrite(fout2,"%d\n",o_expansion);

end

endmodule

```

相关文章
|
5月前
|
存储 算法 生物认证
基于Zhang-Suen算法的图像细化处理FPGA实现,包含testbench和matlab验证程序
本项目基于Zhang-Suen算法实现图像细化处理,支持FPGA与MATLAB双平台验证。通过对比,FPGA细化效果与MATLAB一致,可有效减少图像数据量,便于后续识别与矢量化处理。算法适用于字符识别、指纹识别等领域,配套完整仿真代码及操作说明。
|
6月前
|
算法 测试技术 编译器
使用 Synopsys VCS 生成 SystemVerilog DPI 组件的 HDL 验证器,将 SystemVerilog DPI 组件从 MATLAB 生成用于 Synopsys VCS 模拟
使用 Synopsys VCS 生成 SystemVerilog DPI 组件的 HDL 验证器,将 SystemVerilog DPI 组件从 MATLAB 生成用于 Synopsys VCS 模拟
221 0
|
7月前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
12月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
12月前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
419 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
292 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
277 3
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
226 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
240 8

热门文章

最新文章