Spring Boot 3 整合 xxl-job 实现分布式定时任务调度,结合 Docker 容器化部署(图文指南)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Spring Boot 3 整合 xxl-job 实现分布式定时任务调度,结合 Docker 容器化部署(图文指南)

前言


xxl-job 是一个分布式任务调度平台,它提供了强大的任务调度和执行能力,可以帮助我们实现任务的自动化调度和执行。本文将介绍如何在 Docker 环境下部署 xxl-job,并将其与 Spring Boot 进行整合。


初始化数据库


数据库脚本:tables_xxl_job-2.4.0.sql

# XXL-JOB v2.4.0
# Copyright (c) 2015-present, xuxueli.
CREATE database if NOT EXISTS `xxl_job` default character set utf8mb4 collate utf8mb4_unicode_ci;
use `xxl_job`;
SET NAMES utf8mb4;
CREATE TABLE `xxl_job_info` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `job_group` int(11) NOT NULL COMMENT '执行器主键ID',
  `job_desc` varchar(255) NOT NULL,
  `add_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  `author` varchar(64) DEFAULT NULL COMMENT '作者',
  `alarm_email` varchar(255) DEFAULT NULL COMMENT '报警邮件',
  `schedule_type` varchar(50) NOT NULL DEFAULT 'NONE' COMMENT '调度类型',
  `schedule_conf` varchar(128) DEFAULT NULL COMMENT '调度配置,值含义取决于调度类型',
  `misfire_strategy` varchar(50) NOT NULL DEFAULT 'DO_NOTHING' COMMENT '调度过期策略',
  `executor_route_strategy` varchar(50) DEFAULT NULL COMMENT '执行器路由策略',
  `executor_handler` varchar(255) DEFAULT NULL COMMENT '执行器任务handler',
  `executor_param` varchar(512) DEFAULT NULL COMMENT '执行器任务参数',
  `executor_block_strategy` varchar(50) DEFAULT NULL COMMENT '阻塞处理策略',
  `executor_timeout` int(11) NOT NULL DEFAULT '0' COMMENT '任务执行超时时间,单位秒',
  `executor_fail_retry_count` int(11) NOT NULL DEFAULT '0' COMMENT '失败重试次数',
  `glue_type` varchar(50) NOT NULL COMMENT 'GLUE类型',
  `glue_source` mediumtext COMMENT 'GLUE源代码',
  `glue_remark` varchar(128) DEFAULT NULL COMMENT 'GLUE备注',
  `glue_updatetime` datetime DEFAULT NULL COMMENT 'GLUE更新时间',
  `child_jobid` varchar(255) DEFAULT NULL COMMENT '子任务ID,多个逗号分隔',
  `trigger_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '调度状态:0-停止,1-运行',
  `trigger_last_time` bigint(13) NOT NULL DEFAULT '0' COMMENT '上次调度时间',
  `trigger_next_time` bigint(13) NOT NULL DEFAULT '0' COMMENT '下次调度时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_log` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `job_group` int(11) NOT NULL COMMENT '执行器主键ID',
  `job_id` int(11) NOT NULL COMMENT '任务,主键ID',
  `executor_address` varchar(255) DEFAULT NULL COMMENT '执行器地址,本次执行的地址',
  `executor_handler` varchar(255) DEFAULT NULL COMMENT '执行器任务handler',
  `executor_param` varchar(512) DEFAULT NULL COMMENT '执行器任务参数',
  `executor_sharding_param` varchar(20) DEFAULT NULL COMMENT '执行器任务分片参数,格式如 1/2',
  `executor_fail_retry_count` int(11) NOT NULL DEFAULT '0' COMMENT '失败重试次数',
  `trigger_time` datetime DEFAULT NULL COMMENT '调度-时间',
  `trigger_code` int(11) NOT NULL COMMENT '调度-结果',
  `trigger_msg` text COMMENT '调度-日志',
  `handle_time` datetime DEFAULT NULL COMMENT '执行-时间',
  `handle_code` int(11) NOT NULL COMMENT '执行-状态',
  `handle_msg` text COMMENT '执行-日志',
  `alarm_status` tinyint(4) NOT NULL DEFAULT '0' COMMENT '告警状态:0-默认、1-无需告警、2-告警成功、3-告警失败',
  PRIMARY KEY (`id`),
  KEY `I_trigger_time` (`trigger_time`),
  KEY `I_handle_code` (`handle_code`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_log_report` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `trigger_day` datetime DEFAULT NULL COMMENT '调度-时间',
  `running_count` int(11) NOT NULL DEFAULT '0' COMMENT '运行中-日志数量',
  `suc_count` int(11) NOT NULL DEFAULT '0' COMMENT '执行成功-日志数量',
  `fail_count` int(11) NOT NULL DEFAULT '0' COMMENT '执行失败-日志数量',
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `i_trigger_day` (`trigger_day`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_logglue` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `job_id` int(11) NOT NULL COMMENT '任务,主键ID',
  `glue_type` varchar(50) DEFAULT NULL COMMENT 'GLUE类型',
  `glue_source` mediumtext COMMENT 'GLUE源代码',
  `glue_remark` varchar(128) NOT NULL COMMENT 'GLUE备注',
  `add_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_registry` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `registry_group` varchar(50) NOT NULL,
  `registry_key` varchar(255) NOT NULL,
  `registry_value` varchar(255) NOT NULL,
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `i_g_k_v` (`registry_group`,`registry_key`,`registry_value`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_group` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `app_name` varchar(64) NOT NULL COMMENT '执行器AppName',
  `title` varchar(12) NOT NULL COMMENT '执行器名称',
  `address_type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '执行器地址类型:0=自动注册、1=手动录入',
  `address_list` text COMMENT '执行器地址列表,多地址逗号分隔',
  `update_time` datetime DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `username` varchar(50) NOT NULL COMMENT '账号',
  `password` varchar(50) NOT NULL COMMENT '密码',
  `role` tinyint(4) NOT NULL COMMENT '角色:0-普通用户、1-管理员',
  `permission` varchar(255) DEFAULT NULL COMMENT '权限:执行器ID列表,多个逗号分割',
  PRIMARY KEY (`id`),
  UNIQUE KEY `i_username` (`username`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
CREATE TABLE `xxl_job_lock` (
  `lock_name` varchar(50) NOT NULL COMMENT '锁名称',
  PRIMARY KEY (`lock_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
INSERT INTO `xxl_job_group`(`id`, `app_name`, `title`, `address_type`, `address_list`, `update_time`) VALUES (1, 'xxl-job-executor-sample', '示例执行器', 0, NULL, '2018-11-03 22:21:31' );
INSERT INTO `xxl_job_info`(`id`, `job_group`, `job_desc`, `add_time`, `update_time`, `author`, `alarm_email`, `schedule_type`, `schedule_conf`, `misfire_strategy`, `executor_route_strategy`, `executor_handler`, `executor_param`, `executor_block_strategy`, `executor_timeout`, `executor_fail_retry_count`, `glue_type`, `glue_source`, `glue_remark`, `glue_updatetime`, `child_jobid`) VALUES (1, 1, '测试任务1', '2018-11-03 22:21:31', '2018-11-03 22:21:31', 'XXL', '', 'CRON', '0 0 0 * * ? *', 'DO_NOTHING', 'FIRST', 'demoJobHandler', '', 'SERIAL_EXECUTION', 0, 0, 'BEAN', '', 'GLUE代码初始化', '2018-11-03 22:21:31', '');
INSERT INTO `xxl_job_user`(`id`, `username`, `password`, `role`, `permission`) VALUES (1, 'admin', 'e10adc3949ba59abbe56e057f20f883e', 1, NULL);
INSERT INTO `xxl_job_lock` ( `lock_name`) VALUES ( 'schedule_lock');
commit;

Docker 部署 xxl-job


下载镜像


Docker 镜像地址: https://hub.docker.com/r/xuxueli/xxl-job-admin/

# 建议指定版本号
docker pull xuxueli/xxl-job-admin:2.4.0

创建容器并运行


创建日志挂载目录

mkdir -p /logs/xxl-job

创建容器并运行

docker run -d --name xxl-job-admin \
-e PARAMS="--spring.datasource.url=jdbc:mysql://127.0.0.1:3306/xxl_job?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&serverTimezone=Asia/Shanghai --spring.datasource.username=root --spring.datasource.password=123456"  \
-e JAVA_OPTS="-Xms512M -Xmx512m" \
-p 8080:8080 \
-v /logs/xxl-job:/data/applogs  \
xuxueli/xxl-job-admin:2.4.0

访问调度中心


调度中心管控台地址:http://localhost:8080/xxl-job-admin


默认登录账号密码:admin/123456


登录后运行界面如下图所示:

1.png

SpringBoot 整合 xxl-job


pom.xml

<dependency>
    <groupId>com.xuxueli</groupId>
    <artifactId>xxl-job-core</artifactId>
    <version>2.4.0</version>
</dependency>

application.yml

# xxl-job 定时任务配置
xxl:
  job:
    admin:
      # 多个地址使用,分割
      addresses: http://127.0.0.1:8080/xxl-job-admin
    accessToken: default_token
    executor:
      appname: xxl-job-executor-${spring.application.name}
      address:
      ip:
      port: 9999
      logpath: /data/applogs/xxl-job/jobhandler
      logretentiondays: 30

XxlJobConfig.java


XXL-JOB 自动装配配置

import com.xxl.job.core.executor.impl.XxlJobSpringExecutor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
 * xxl-job config
 *
 * @author xuxueli 2017-04-28
 */
@Configuration
@Slf4j
public class XxlJobConfig {
    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;
    @Value("${xxl.job.accessToken}")
    private String accessToken;
    @Value("${xxl.job.executor.appname}")
    private String appname;
    @Value("${xxl.job.executor.address}")
    private String address;
    @Value("${xxl.job.executor.ip}")
    private String ip;
    @Value("${xxl.job.executor.port}")
    private int port;
    @Value("${xxl.job.executor.logpath}")
    private String logPath;
    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;
    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        log.info(">>>>>>>>>>> xxl-job config init.");
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    }
}

执行器注册查看


需要 SpringBoot 应用和调度中心在同一网络,网络不互通则调度器无法调度执行器


启动 SpringBoot 工程 之后,前往调度中心查看执行器注册结果

2.png

定时任务测试


添加测试任务


在项目中添加名为 demoJobHandler 的任务处理器(Bean模式)

import com.xxl.job.core.handler.annotation.XxlJob;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;
/**
 * xxl-job 测试示例(Bean模式)
 */
@Component
@Slf4j
public class XxlJobSampleHandler {
    @XxlJob("demoJobHandler")
    public void demoJobHandler() {
        log.info("XXL-JOB, Hello World.");
    }
}

配置定时任务


调度中心新增测试任务,运行模式为 BEAN , 任务处理器为 demoJobHandler

3.png

配置 Corn 表达式,让其每秒执行一次任务

4.png

启动定时任务

5.png

测试结果


成功,频率为1s执行一次。

6.png

结语


通过本文的实战演示,我们成功地将 xxl-job 部署到 Docker 环境中,并与 Spring Boot 进行了整合。我们了解了 xxl-job 的基本概念和特点,并学习了如何配置调度器任务、开启任务,并调用执行器执行任务。xxl-job 提供了强大的任务调度和执行能力,可以帮助我们实现任务的自动化调度和执行,提高工作效率。希望本文对你理解和使用 xxl-job 有所帮助,欢迎你在实际项目中尝试并应用这些知识。


相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
12天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
51 2
|
22天前
|
Kubernetes 监控 开发者
掌握容器化:Docker与Kubernetes的最佳实践
【10月更文挑战第26天】本文深入探讨了Docker和Kubernetes的最佳实践,涵盖Dockerfile优化、数据卷管理、网络配置、Pod设计、服务发现与负载均衡、声明式更新等内容。同时介绍了容器化现有应用、自动化部署、监控与日志等开发技巧,以及Docker Compose和Helm等实用工具。旨在帮助开发者提高开发效率和系统稳定性,构建现代、高效、可扩展的应用。
|
14天前
|
运维 Kubernetes Docker
利用Docker和Kubernetes构建微服务架构
利用Docker和Kubernetes构建微服务架构
|
1月前
|
Kubernetes 调度 虚拟化
Kubernetes和Docker有什么区别
【10月更文挑战第18天】Kubernetes和Docker有什么区别
|
12天前
|
监控 持续交付 Docker
Docker 容器化部署在微服务架构中的应用有哪些?
Docker 容器化部署在微服务架构中的应用有哪些?
|
12天前
|
监控 持续交付 Docker
Docker容器化部署在微服务架构中的应用
Docker容器化部署在微服务架构中的应用
|
12天前
|
安全 持续交付 Docker
微服务架构和 Docker 容器化部署的优点是什么?
微服务架构和 Docker 容器化部署的优点是什么?
|
20天前
|
JavaScript 持续交付 Docker
解锁新技能:Docker容器化部署在微服务架构中的应用
【10月更文挑战第29天】在数字化转型中,微服务架构因灵活性和可扩展性成为企业首选。Docker容器化技术为微服务的部署和管理带来革命性变化。本文探讨Docker在微服务架构中的应用,包括隔离性、可移植性、扩展性、版本控制等方面,并提供代码示例。
55 1
|
28天前
|
Kubernetes 负载均衡 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
本文介绍了Docker和Kubernetes在构建高效微服务架构中的应用,涵盖基本概念、在微服务架构中的作用及其实现方法。通过具体实例,如用户服务、商品服务和订单服务,展示了如何利用Docker和Kubernetes实现服务的打包、部署、扩展及管理,确保微服务架构的稳定性和可靠性。
79 7
|
27天前
|
Kubernetes 负载均衡 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【10月更文挑战第22天】随着云计算和容器技术的快速发展,微服务架构逐渐成为现代企业级应用的首选架构。微服务架构将一个大型应用程序拆分为多个小型、独立的服务,每个服务负责完成一个特定的功能。这种架构具有灵活性、可扩展性和易于维护的特点。在构建微服务架构时,Docker和Kubernetes是两个不可或缺的工具,它们可以完美搭档,为微服务架构提供高效的支持。本文将从三个方面探讨Docker和Kubernetes在构建高效微服务架构中的应用:一是Docker和Kubernetes的基本概念;二是它们在微服务架构中的作用;三是通过实例讲解如何使用Docker和Kubernetes构建微服务架构。
59 6
下一篇
无影云桌面