背景
GPUDirect RDMA 是 Kepler 级 GPU 和 CUDA 5.0 中引入的一项技术,可以让使用pcie标准的gpu和第三方设备进行直接的数据交换,而不涉及CPU。传统上,当数据需要在 GPU 和另一个设备之间传输时,数据必须通过 CPU,从而导致潜在的瓶颈并增加延迟。使用 GPUDirect,网络适配器和存储驱动器可以直接读写 GPU 内存,减少不必要的内存消耗,减少 CPU 开销并降低延迟,从而显著提高性能。
当前网络通信已经成为分布式机器学习的性能瓶颈,所以GDR技术的诞生对提高gpu通信性能至关重要
GDR技术相较之前技术的升级点
下图直观的展示了gdr技术的核心点所在,归纳来说就是GPUDirect RDMA 技术使得数据流绕过主机内存和 CPU,直接走pcie链路,降低了传输延迟,加快了数据交换速度,并可以减轻 CPU 负载,释放 CPU 的计算能力,同时也避免了数据在主机内存中的复制,大大提升了性能。
那么,GDR就一定比传统方式快吗?
前文介绍了gdr的优势,仿佛gdr对比传统方式有百利而无一害,那么gdr就一定快吗?我们可以看下如下拓扑结构
我们拥有了如下图所示的拓扑,gpu与网卡是跨rc的
这时候假设我们想要与对端机器进行一个通信,使能了gdr之后的整个路径流程如下图所示
首先是由网卡发起dma read的request,gpu收到之后再返回,网卡在收到dma read请求返回的数据接着rdma write到对端的网卡,再dma write到gpu中,由于gdr技术是基于pcie标准的,所以整体链路都是需要通过整个pcie链路来触达,于是我们单看一端,链路就会是一个dma_read request翻山越岭,翻过rc,翻过switch到达gpu然后再是tlp包翻山越岭翻越switch翻越rc再到网卡,这么长的链路会导致延迟增大
而如果不使用gdr,整个链路则会是gpu数据搬运到系统内存,再从系统内存搬运到网卡,整体是pipline起来的,这种情况下,由于pcie链路长导致延迟大,使用gdr性能是可能差于不使用gdr的。
那么gdr的合适使用场景是什么呢,比较推荐的场景就是gpu与第三方设备在同switch下的场景,这种情况下是存在性能增益的
长拓扑链路的可能改进方案
那么对于上面那种拓扑,是否存在方案可以将其性能提升呢?上面这种拓扑性能差的最大问题为整个pcie链路过长,如果能缩短链路就可以降低延迟,提升性能,于是我们把眼光放到了dma_read上
dma write的优势
如果将网卡发出的dma read替换成gpu发起的dma write,就可以降低一半的pcie链路长导致的时延,同时dma write相较于dma read也存在本身性能上的优势,对于read,pcie采用切分传输的方式,首先需求方发起一个读请求,完成器发送 ACK DLLP 来确认需求方的读取请求,接下来完成器再返回一个completion data,那个completion date会被切分到多个completion包里,而write则是单一包,于是就会导致read 的吞吐是低于write的吞吐的,举个例子,假设read rerquest是512bytes,而completion包大小为256 bytes,那么最大最理想的读吞吐则如下:
completion packets需要的数量为 512/256 = 2
没有 ECRC 的 3 dword TLP 标头的开销为 2*20=40bytes
最大吞吐为 512/(512 + 40)=92%
下图即为这个例子的一个示意图,read需要有两个completion包而write则是单一包即完成
以上的计算为读吞吐最大最理想的情况,pcie标准定义了read completion boundary (RCB) 参数,这个参数定义了一个read request被几个completion 包回复的边界,对于root complext来说,rcb的值是64bytes或者128bytes,对于其他pcie设备来说,则是128bytes。
对于没对齐的read request来说,吞吐数据还会更差。
所以改成dma write相较于dma read来说,有时延上的提升,同时也有吞吐上的提升。
优化后的方案整体链路就如下图所示
简单尝试
当前rdma协议是不支持这种方式的,所以就需要自己探索下是否可行,那么第一点就是gpu需要能主动对第三方设备发起dma write,我们知道gpu是可以对gpu进行dma write的,那么下面就做一个简单的试验
可以看到是可以跑通的,即gpu可以对非gpu地址主动dma write
可能遇到的问题
那么如果需要让gpu来发起dma write还有哪些方面需要考虑呢?
丢包问题
首先,之前由网卡发起是因为网卡这边可以计算到发包一定能成功再发起dma read请求,这样tlp包到了网卡就能顺畅发出去,不存在丢包风险,当前由gpu发起的话tlp包抵达网卡后,如果网卡接收到包就直接发出就存在丢包风险,所以需要有一个规避方案,网卡需要计算一定能发再发,于是就需要有一个缓存的地方将可能丢包的包先缓存起来
调度问题
其次,gpu直接dma write到网卡的tlp包可能不会被网卡所接收,需要在gpu和网卡间达成约定,gpu发的那些包网卡不进行丢弃而是调度管理起来发送到对端,那么就需要gpu这边能kick doorbell,通知网卡收到的dma数据包需要留下,有一种方案就是移植部分libverbs到gpu上面去跑,这样子gpu就可以与网卡进行直接通信
另一个就是需要封装一个api,应用发起rdma命令后,使之前让网卡发起dma read的流程变为让gpu发起dma write
总结
综上所示,通过以下方法,可以提升gdr性能:
- 上层封装一个api可以使gpu发起dma write
- 将libverbs移植部分到gpu上跑
- gpu主动发起dma write
- 网卡那边增加缓存,对于不是一定有把握发成功的包先进行缓存,当确定能发送以后再将包发送出去
当然,整个方案的落地也还有很多工作要做,需要修改rdma协议,同时在缓存与调度方面也需要很多工作进行,但收益也是显而易见的,能大大提升gdr的通用性与性能,使gdr在长topo链路时也变得可用。
我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8
【扫码填写上方调研问卷】
欢迎每位来到弹性计算的开发者们来反馈问题哦~