☆打卡算法☆LeetCode 223. 矩形面积 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ☆打卡算法☆LeetCode 223. 矩形面积 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个有个由直线构成的矩形,计算并返回两个矩形覆盖的纵面。”

2、题目描述

给你 二维 平面上两个 由直线构成且边与坐标轴平行/垂直 的矩形,请你计算并返回两个矩形覆盖的总面积。

每个矩形由其 左下 顶点和 右上 顶点坐标表示:

  • 第一个矩形由其左下顶点 (ax1, ay1) 和右上顶点 (ax2, ay2) 定义。
  • 第二个矩形由其左下顶点 (bx1, by1) 和右上顶点 (bx2, by2) 定义。

1702384527295.jpg

示例 1:
输入:ax1 = -3, ay1 = 0, ax2 = 3, ay2 = 4, bx1 = 0, by1 = -1, bx2 = 9, by2 = 2
输出:45
示例 2:
输入:ax1 = -2, ay1 = -2, ax2 = 2, ay2 = 2, bx1 = -2, by1 = -2, bx2 = 2, by2 = 2
输出:16

二、解题

1、思路分析

题意是给定两个二维平面的矩形,计算两个矩形覆盖的总面积。

求两个矩形覆盖的总面积,也就是求两个矩形的面积减去重叠部分的面积。

两个矩形的面积可以根据左下和右上顶点求出,两个矩形的重叠面积可以通过重叠部分的边界进行计算。

求两个矩形的重叠面积,可以转换为求两个矩形在坐标轴上的重合长度。

若两个矩形在x轴上的重合长度为x,在y轴的重合长度为y,则重合面积为C=x * y。

两个矩形在任意坐标轴上没有重合长度,则不存在重合面积,那么重合长度与0取max。

2、代码实现

代码参考:

class Solution {
    public int computeArea(int ax1, int ay1, int ax2, int ay2, int bx1, int by1, int bx2, int by2) {
        int area1 = (ax2 - ax1) * (ay2 - ay1), area2 = (bx2 - bx1) * (by2 - by1);
        int overlapWidth = Math.min(ax2, bx2) - Math.max(ax1, bx1), overlapHeight = Math.min(ay2, by2) - Math.max(ay1, by1);
        int overlapArea = Math.max(overlapWidth, 0) * Math.max(overlapHeight, 0);
        return area1 + area2 - overlapArea;
    }
}

1702384555961.jpg

3、时间复杂度

时间复杂度:O(1)

只需要常量级的时间空间。

空间复杂度:O(1)

只需要常量级的变量空间。

三、总结

根据重叠部分的水平变投影到x轴和y轴的线段长度即可计算重叠部分的面积。

只有当两条线的长度都大于0时,重叠面积才大于0,否则重叠部分的面积为0。

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
13天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
24 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
37 0

推荐镜像

更多