☆打卡算法☆LeetCode 209. 长度最小的子数组 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ☆打卡算法☆LeetCode 209. 长度最小的子数组 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个整数数组和正整数target,找出数组中满足≥target的长度最小的子数组,返回其长度。”

2、题目描述

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

示例 1:
输入: target = 7, nums = [2,3,1,2,4,3]
输出: 2
解释: 子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入: target = 4, nums = [1,4,4]
输出: 1

二、解题

1、思路分析

这道题要找出该数组中满足其和 ≥ target 的长度最小的连续子数组。

直观的方法是枚举数组中每个下标i作为子数组的开始下标,找到满足条件的下标j,然后更新子数组的最小长度也就是j-i+1,但是这种方法实现可能会超出时间限制。

上面说的方法时间复杂度为O(n2),因为找到长度最小的子数组需要O(n)的时间,要全部找一遍需要O(n2)的时间复杂度,那么能不能将时间优化一下呢。

常见的优化方法,可以使用二分查找,就可以将时间复杂度优化到O(log n),使用二分查找,需要创建一个数组用于存储数组的前缀和,前缀和就是从位置1到位置i这个区间内的所有的数字之和,对于每个开始下标i,通过二分查找得到大于或等于i的最小下标,更新子数组的最小长度。

2、代码实现

代码参考:

class Solution {
    public int minSubArrayLen(int s, int[] nums) {
        int n = nums.length;
        if (n == 0) {
            return 0;
        }
        int ans = Integer.MAX_VALUE;
        int[] sums = new int[n + 1]; 
        // 为了方便计算,令 size = n + 1 
        // sums[0] = 0 意味着前 0 个元素的前缀和为 0
        // sums[1] = A[0] 前 1 个元素的前缀和为 A[0]
        // 以此类推
        for (int i = 1; i <= n; i++) {
            sums[i] = sums[i - 1] + nums[i - 1];
        }
        for (int i = 1; i <= n; i++) {
            int target = s + sums[i - 1];
            int bound = Arrays.binarySearch(sums, target);
            if (bound < 0) {
                bound = -bound - 1;
            }
            if (bound <= n) {
                ans = Math.min(ans, bound - (i - 1));
            }
        }
        return ans == Integer.MAX_VALUE ? 0 : ans;
    }
}

1702383066255.jpg

3、时间复杂度

时间复杂度:O(n log n)

其中n是数组的长度,需要遍历每个下标作为子数组的开始下标,通过二分查找得到长度最小的子数组,二分查找的时间复杂度是O(log n),总时间复杂度为O(n log n)。

空间复杂度:O(n)

其中n是数组的长度。

三、总结

因为这道题保证了数组中的每个元素都是正值。

那么前缀和一定是递增的,可以保证二分查找是不会出现问题的。

如果数组中不是每个元素都为正的话,就不能使用二分来查找位置了。

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
13天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
24 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
37 0

推荐镜像

更多