☆打卡算法☆LeetCode 208. 实现 Trie (前缀树) 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: ☆打卡算法☆LeetCode 208. 实现 Trie (前缀树) 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“实现Trie类,Trie类是一种树形数据结构,用于高效储存和检索字符串数据集中的键。”

2、题目描述

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

  • Trie() 初始化前缀树对象。
  • void insert(String word) 向前缀树中插入字符串 word 。
  • boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
  • boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。
示例 1:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple");   // 返回 True
trie.search("app");     // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app");     // 返回 True
示例 2:

二、解题

1、思路分析

题意要求实现一个Trie 类,也就是前缀树,前缀树是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。

Trie是一颗非典型的多叉树模型,也就是每个节点的分支数量可能为多个。

之所以说是非典型的树,是因为它跟一般的多叉树不一样,一般的多叉树的节点是有一个节点值,还有一个指向子节点的指针。

而Trie的节点有一个标记值,标记该节点是否是一个串的结束,还有一个字母映射表。

Trie为什么要这么设计呢,Trie的节点值并没有直接保存字符值的数据,而是用了一个字母映射表,字母映射表中保存了对当前节点而言下一个可能出现的所有字符的链接,比如下面三个单词"sea","sells","she"在Trie的样子:

1702382780314.jpg

Trie中一般含有大量的空链接,因此在绘制一颗前缀树通常忽略空链接,也就是这样:

1702382802385.jpg

接下来就来实现对Trie的一些常用操作方法吧。

首先是插入字符串,有两种情况:

  • 1、子节点存在,指针移动到子节点,继续处理下一个字符
  • 2、子节点不存在,创建一个新的节点,然后指针移动到子节点,继续搜序偶下一个字符

重复以上步骤,直到处理字符串的最后一个字符,将当前节点标记为字符串的结尾。

查找前缀,也有两种情况:

  • 1、子节点存在,指针移动到子节点,继续搜索下一个字符
  • 2、子节点不存在,说明字典树中不包含该前缀,返回空指针

重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。

2、代码实现

代码参考:

class Trie {
    private Trie[] children;
    private boolean isEnd;
    public Trie() {
        children = new Trie[26];
        isEnd = false;
    }
    public void insert(String word) {
        Trie node = this;
        for (int i = 0; i < word.length(); i++) {
            char ch = word.charAt(i);
            int index = ch - 'a';
            if (node.children[index] == null) {
                node.children[index] = new Trie();
            }
            node = node.children[index];
        }
        node.isEnd = true;
    }
    public boolean search(String word) {
        Trie node = searchPrefix(word);
        return node != null && node.isEnd;
    }
    public boolean startsWith(String prefix) {
        return searchPrefix(prefix) != null;
    }
    private Trie searchPrefix(String prefix) {
        Trie node = this;
        for (int i = 0; i < prefix.length(); i++) {
            char ch = prefix.charAt(i);
            int index = ch - 'a';
            if (node.children[index] == null) {
                return null;
            }
            node = node.children[index];
        }
        return node;
    }
}

1702382826300.jpg

3、时间复杂度

时间复杂度:O(1)

时间复杂度初始为O(1),其余操作为O(|S|),其中|S|是每次插入或查询字符串的长度。

空间复杂度:O(|T|·∑)

其中|T|是所有插入字符串的长度和,∑为字符集的大小。

三、总结

通过以上介绍和代码实现我们可以总结出 Trie 的几点性质:

  • Trie 的形状和单词的插入或删除顺序无关,也就是说对于任意给定的一组单词,Trie 的形状都是唯一的。
  • 查找或插入一个长度为 L 的单词,访问 next 数组的次数最多为 L+1,和 Trie 中包含多少个单词无关。
  • Trie 的每个结点中都保留着一个字母表,这是很耗费空间的。如果 Trie 的高度为 n,字母表的大小为 m,最坏的情况是 Trie 中还不存在前缀相同的单词,那空间复杂度就为 O(mn)。

最后,关于 Trie 的应用场景,希望你能记住 8 个字:一次建树,多次查询。

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
44 3
|
1月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
38 0
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
16天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
20天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
57 4
|
21天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
27 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
41 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
下一篇
无影云桌面